Ngoc Tu Vu , Van Thong Huynh , Seung-Won Kim , Ji-eun Shin , Hyung-Jeong Yang , Soo-Hyung Kim
{"title":"Switch fusion for continuous emotion estimation from multiple physiological signals","authors":"Ngoc Tu Vu , Van Thong Huynh , Seung-Won Kim , Ji-eun Shin , Hyung-Jeong Yang , Soo-Hyung Kim","doi":"10.1016/j.bspc.2025.107831","DOIUrl":null,"url":null,"abstract":"<div><div>Physiological signals represent a robust foundation for affective computing, primarily due to their resistance to conscious manipulation by subjects. With the proliferation of applications such as safe driving, mental health treatment, and wearable wellness technologies, emotion recognition based on physiological signals has garnered substantial attention. However, the increasing variety of signals captured by diverse sensors poses a challenge for models to integrate these inputs and accurately predict emotional states efficiently. Determining an optimized fusion strategy becomes increasingly complex as the number of signals grows. To address this, we propose switch fusion, a dynamic allocation fusion algorithm designed to dynamically enable models to learn optimal fusion strategies of multiple modalities. Leveraging the mixture of experts’ frameworks, our approach employs a gating mechanism to route modalities to specialized experts, utilizing these experts as fusion encoder modules. Furthermore, we demonstrate the effectiveness of time series-based models in processing physiological signals for continuous emotion estimation to enhance computational efficiency. Experiments conducted on the continuously annotated signals of emotion dataset highlight the effectiveness of switch fusion, achieving root mean square errors of 1.064 and 1.089 for arousal and valence scores, respectively, surpassing state-of-the-art methods in 3 out of 4 experimental scenarios. This study underscores the critical role of dynamic fusion strategies in continuous emotion estimation from diverse physiological signals, effectively addressing the challenges posed by the increasing complexity of sensor inputs.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"107 ","pages":"Article 107831"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425003428","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Physiological signals represent a robust foundation for affective computing, primarily due to their resistance to conscious manipulation by subjects. With the proliferation of applications such as safe driving, mental health treatment, and wearable wellness technologies, emotion recognition based on physiological signals has garnered substantial attention. However, the increasing variety of signals captured by diverse sensors poses a challenge for models to integrate these inputs and accurately predict emotional states efficiently. Determining an optimized fusion strategy becomes increasingly complex as the number of signals grows. To address this, we propose switch fusion, a dynamic allocation fusion algorithm designed to dynamically enable models to learn optimal fusion strategies of multiple modalities. Leveraging the mixture of experts’ frameworks, our approach employs a gating mechanism to route modalities to specialized experts, utilizing these experts as fusion encoder modules. Furthermore, we demonstrate the effectiveness of time series-based models in processing physiological signals for continuous emotion estimation to enhance computational efficiency. Experiments conducted on the continuously annotated signals of emotion dataset highlight the effectiveness of switch fusion, achieving root mean square errors of 1.064 and 1.089 for arousal and valence scores, respectively, surpassing state-of-the-art methods in 3 out of 4 experimental scenarios. This study underscores the critical role of dynamic fusion strategies in continuous emotion estimation from diverse physiological signals, effectively addressing the challenges posed by the increasing complexity of sensor inputs.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.