A novel perspective of ATR-FTIR spectroscopy combined with multiple machine learning methods for postmortem interval (PMI) human skin

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Mingyan Deng , Xinggong Liang , Wanqing Zhang , Shiyang Xie , Shuo Wu , Gengwang Hu , Jianliang Luo , Hao Wu , Zhengyang Zhu , Run Chen , Qinru Sun , Gongji Wang , Zhenyuan Wang
{"title":"A novel perspective of ATR-FTIR spectroscopy combined with multiple machine learning methods for postmortem interval (PMI) human skin","authors":"Mingyan Deng ,&nbsp;Xinggong Liang ,&nbsp;Wanqing Zhang ,&nbsp;Shiyang Xie ,&nbsp;Shuo Wu ,&nbsp;Gengwang Hu ,&nbsp;Jianliang Luo ,&nbsp;Hao Wu ,&nbsp;Zhengyang Zhu ,&nbsp;Run Chen ,&nbsp;Qinru Sun ,&nbsp;Gongji Wang ,&nbsp;Zhenyuan Wang","doi":"10.1016/j.vibspec.2025.103800","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the lack of simple, accurate, and reliable methods, the determination of PMI remains one of the most challenging tasks in forensic pathology, particularly during advanced stages of decomposition. Although numerous methods have been developed for PMI estimation, most are based on animal studies, and the extrapolation of these results to humans remains limited and questionable, providing limited practical utility. To address this gap, we collected a substantial number of human samples and focused on skin tissue, which shows significant potential but has been less extensively studied. ATR-FTIR spectroscopy combined with multiple machine learning algorithms was employed to monitor the spectral changes of skin at different PMI groups. Various algorithms (PLS-R, CLR, PCR, MLR, SVR, XGB-R, and ANN) were utilized to predict PMI. The results demonstrated that the chemical changes in lipids and proteins within postmortem skin tissue exhibited a strong time-dependent pattern. The intensity of lipid absorption peaks in fresh skin tissue was significantly higher than that in decomposed tissue, whereas amide I and II bands demonstrated the opposite trend, initially increasing and subsequently decreasing, which played a crucial role in distinguishing different time points and estimating PMI. The SVR model yielded highly satisfactory results, with the actual PMI showing close alignment with the predicted PMI. The R²CV reached 0.92, while the R²P achieved 0.96, with the RMSE as low as 2.0 days. The RMSEP/RMSECV value of 0.77 indicates the model's strong stability. These findings demonstrate that ATR-FTIR spectroscopy combined with machine learning holds significant potential and practical applicability for PMI estimation in actual forensic cases. This approach not only addresses the research gap in PMI estimation based on human skin samples but also establishes a new research direction in this field.</div></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"138 ","pages":"Article 103800"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203125000347","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the lack of simple, accurate, and reliable methods, the determination of PMI remains one of the most challenging tasks in forensic pathology, particularly during advanced stages of decomposition. Although numerous methods have been developed for PMI estimation, most are based on animal studies, and the extrapolation of these results to humans remains limited and questionable, providing limited practical utility. To address this gap, we collected a substantial number of human samples and focused on skin tissue, which shows significant potential but has been less extensively studied. ATR-FTIR spectroscopy combined with multiple machine learning algorithms was employed to monitor the spectral changes of skin at different PMI groups. Various algorithms (PLS-R, CLR, PCR, MLR, SVR, XGB-R, and ANN) were utilized to predict PMI. The results demonstrated that the chemical changes in lipids and proteins within postmortem skin tissue exhibited a strong time-dependent pattern. The intensity of lipid absorption peaks in fresh skin tissue was significantly higher than that in decomposed tissue, whereas amide I and II bands demonstrated the opposite trend, initially increasing and subsequently decreasing, which played a crucial role in distinguishing different time points and estimating PMI. The SVR model yielded highly satisfactory results, with the actual PMI showing close alignment with the predicted PMI. The R²CV reached 0.92, while the R²P achieved 0.96, with the RMSE as low as 2.0 days. The RMSEP/RMSECV value of 0.77 indicates the model's strong stability. These findings demonstrate that ATR-FTIR spectroscopy combined with machine learning holds significant potential and practical applicability for PMI estimation in actual forensic cases. This approach not only addresses the research gap in PMI estimation based on human skin samples but also establishes a new research direction in this field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vibrational Spectroscopy
Vibrational Spectroscopy 化学-分析化学
CiteScore
4.70
自引率
4.00%
发文量
103
审稿时长
52 days
期刊介绍: Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation. The topics covered by the journal include: Sampling techniques, Vibrational spectroscopy coupled with separation techniques, Instrumentation (Fourier transform, conventional and laser based), Data manipulation, Spectra-structure correlation and group frequencies. The application areas covered include: Analytical chemistry, Bio-organic and bio-inorganic chemistry, Organic chemistry, Inorganic chemistry, Catalysis, Environmental science, Industrial chemistry, Materials science, Physical chemistry, Polymer science, Process control, Specialized problem solving.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信