A new difference feature extraction method of slewing bearings in wind turbines via optimization bispectrum domain model

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Miaorui Yang , Kun Zhang , Yanping Zhu , Long Zhang , Yonggang Xu
{"title":"A new difference feature extraction method of slewing bearings in wind turbines via optimization bispectrum domain model","authors":"Miaorui Yang ,&nbsp;Kun Zhang ,&nbsp;Yanping Zhu ,&nbsp;Long Zhang ,&nbsp;Yonggang Xu","doi":"10.1016/j.eswa.2025.127325","DOIUrl":null,"url":null,"abstract":"<div><div>The slewing bearing is a critical component in large equipment like shield machines and wind turbines. Because slewing bearings operate in complex situations with fluctuating speed and load on a regular basis, the vibration signal they produce contains several interferences, making fault features difficult to identify. The specific objective of this study is to provide a new fault diagnosis method, named difference optimization bispectrum, for slewing bearing signals under strong noise interference. The method designs a convex optimization bispectrum model by the convex optimization theory, covering the shortage of traditional decomposition by differentiating features. Based on the model, a two-dimensional weight coefficient is constructed to calculate the difference optimization bispectrum, which reduces the noise and enhances the features in positive and negative bispectrum-domain. This study offers a fresh perspective on extraction of fault information from the signal under strong noise interference, making an original contribution for the fault diagnosis of the slewing bearing. The experiment work presented here provides the practical effect of the method for the slewing bearing signals.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"278 ","pages":"Article 127325"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425009479","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The slewing bearing is a critical component in large equipment like shield machines and wind turbines. Because slewing bearings operate in complex situations with fluctuating speed and load on a regular basis, the vibration signal they produce contains several interferences, making fault features difficult to identify. The specific objective of this study is to provide a new fault diagnosis method, named difference optimization bispectrum, for slewing bearing signals under strong noise interference. The method designs a convex optimization bispectrum model by the convex optimization theory, covering the shortage of traditional decomposition by differentiating features. Based on the model, a two-dimensional weight coefficient is constructed to calculate the difference optimization bispectrum, which reduces the noise and enhances the features in positive and negative bispectrum-domain. This study offers a fresh perspective on extraction of fault information from the signal under strong noise interference, making an original contribution for the fault diagnosis of the slewing bearing. The experiment work presented here provides the practical effect of the method for the slewing bearing signals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信