Global meta-analysis reveals different grazing management strategies change greenhouse gas emissions and global warming potential in grasslands

IF 8 1区 环境科学与生态学 Q1 GEOGRAPHY, PHYSICAL
Lingfan Wan , Guohua Liu , Xukun Su
{"title":"Global meta-analysis reveals different grazing management strategies change greenhouse gas emissions and global warming potential in grasslands","authors":"Lingfan Wan ,&nbsp;Guohua Liu ,&nbsp;Xukun Su","doi":"10.1016/j.geosus.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Grazing management significantly influences greenhouse gas (GHG) emissions and the global warming potential (GWP) in grasslands. Yet, a limited understanding of the impact of grazing and grazing exclusion on GHG emissions and GWP in grasslands hinders progress towards grassland ecosystem sustainability and GHG mitigation. We conducted a global meta-analysis of 75 published studies to investigate the effects of grazing and grazing exclusion on methane (CH<sub>4</sub>), carbon dioxide (CO<sub>2</sub>), nitrous oxide (N<sub>2</sub>O), and GWP. Our results revealed that grazing and grazing exclusion significantly increased the CO<sub>2</sub> and CH<sub>4</sub> emissions, respectively. The responses of GHG emissions and GWP to grazing were regulated by grazing intensity and elevation. We also found that light grazing significantly decreased GWP but heavy grazing increased GWP. Reducing grazing intensity was a simple and effective method through stocking rate adjustment, which promised a large GHG mitigation potential. Our results demonstrated that GHG emissions increased with elevation under grassland grazing, implying that irrational grazing in high-elevation grasslands promoted GHG emissions. In comparison with grazing, only long-term grazing exclusion reduced the GWP, and CH<sub>4</sub> emissions enhanced with grazing exclusion duration. However, long-term grazing exclusion may shift economic demand and grazing burden to other areas. Overall, we suggested that regulating the grazing intensity, rather than grazing exclusion, was an effective way to reduce GHG emissions. Our study contributed to the enhancement of sustainable grazing management practices for GHG balance and GWP in global grasslands, and offered a global picture for understanding the changes in GHG emissions and GWP under different grazing management regimes.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 3","pages":"Article 100251"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924001147","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Grazing management significantly influences greenhouse gas (GHG) emissions and the global warming potential (GWP) in grasslands. Yet, a limited understanding of the impact of grazing and grazing exclusion on GHG emissions and GWP in grasslands hinders progress towards grassland ecosystem sustainability and GHG mitigation. We conducted a global meta-analysis of 75 published studies to investigate the effects of grazing and grazing exclusion on methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O), and GWP. Our results revealed that grazing and grazing exclusion significantly increased the CO2 and CH4 emissions, respectively. The responses of GHG emissions and GWP to grazing were regulated by grazing intensity and elevation. We also found that light grazing significantly decreased GWP but heavy grazing increased GWP. Reducing grazing intensity was a simple and effective method through stocking rate adjustment, which promised a large GHG mitigation potential. Our results demonstrated that GHG emissions increased with elevation under grassland grazing, implying that irrational grazing in high-elevation grasslands promoted GHG emissions. In comparison with grazing, only long-term grazing exclusion reduced the GWP, and CH4 emissions enhanced with grazing exclusion duration. However, long-term grazing exclusion may shift economic demand and grazing burden to other areas. Overall, we suggested that regulating the grazing intensity, rather than grazing exclusion, was an effective way to reduce GHG emissions. Our study contributed to the enhancement of sustainable grazing management practices for GHG balance and GWP in global grasslands, and offered a global picture for understanding the changes in GHG emissions and GWP under different grazing management regimes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geography and Sustainability
Geography and Sustainability Social Sciences-Geography, Planning and Development
CiteScore
16.70
自引率
3.10%
发文量
32
审稿时长
41 days
期刊介绍: Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues. Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes: Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations; Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability; Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing; Sustainable Development: Theory, practice and critical challenges in sustainable development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信