Double-emulsion synthesis of reactive epoxy nanospheres for advanced lithium-ion battery binders

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Pingwei Zhu , Lei Zhao , Li Liu , Yudong Huang , Wei Zheng , Jun Li
{"title":"Double-emulsion synthesis of reactive epoxy nanospheres for advanced lithium-ion battery binders","authors":"Pingwei Zhu ,&nbsp;Lei Zhao ,&nbsp;Li Liu ,&nbsp;Yudong Huang ,&nbsp;Wei Zheng ,&nbsp;Jun Li","doi":"10.1016/j.jcis.2025.137434","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of electric vehicles imposes significant challenges on lithium-ion battery (LIBs) technology. Polymer binders offer a promising low-cost solution. However, for anode materials, the conventional styrene butadiene latex/carboxymethyl cellulose (SBR/CMC) binders exhibit inherent issues, including binder flotation during solvent evaporation and undesired film formation on anode surfaces. Herein, ultra-small reactive epoxy nanospheres (EPS, 70 nm) were successfully synthesized using a customized double emulsion (DE) demulsification method. The structural design of the internal water phase, two consecutive emulsifications and an innovative phase inversion strategy are crucial to achieve ultra-small particle size. By eliminating the binder migration phenomenon and establishing a covalent cross-linked network within the electrode, the EPS bonded electrode achieved a peel strength of 7.03 N cm<sup>−1</sup>, surpassing the 4.53 N cm<sup>−1</sup> observed in the SBR bonded electrode. Furthermore, EPS can optimize the electrode pore structure and increase the electrode’s wettability to the electrolyte, thereby improving the electrode rate performance. At a current density of 10C, the EPS bonded electrode achieved a capacity retention of 50.4 %, which is much higher than that of the SBR bonded electrode (21.2 %). Consequently, reactive EPS presents an effective way to enhance the overall performance of LIBs through the strategic design of polymer binders.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137434"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of electric vehicles imposes significant challenges on lithium-ion battery (LIBs) technology. Polymer binders offer a promising low-cost solution. However, for anode materials, the conventional styrene butadiene latex/carboxymethyl cellulose (SBR/CMC) binders exhibit inherent issues, including binder flotation during solvent evaporation and undesired film formation on anode surfaces. Herein, ultra-small reactive epoxy nanospheres (EPS, 70 nm) were successfully synthesized using a customized double emulsion (DE) demulsification method. The structural design of the internal water phase, two consecutive emulsifications and an innovative phase inversion strategy are crucial to achieve ultra-small particle size. By eliminating the binder migration phenomenon and establishing a covalent cross-linked network within the electrode, the EPS bonded electrode achieved a peel strength of 7.03 N cm−1, surpassing the 4.53 N cm−1 observed in the SBR bonded electrode. Furthermore, EPS can optimize the electrode pore structure and increase the electrode’s wettability to the electrolyte, thereby improving the electrode rate performance. At a current density of 10C, the EPS bonded electrode achieved a capacity retention of 50.4 %, which is much higher than that of the SBR bonded electrode (21.2 %). Consequently, reactive EPS presents an effective way to enhance the overall performance of LIBs through the strategic design of polymer binders.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信