LLMs for product classification in e-commerce: A zero-shot comparative study of GPT and claude models

Konstantinos I. Roumeliotis , Nikolaos D. Tselikas , Dimitrios K. Nasiopoulos
{"title":"LLMs for product classification in e-commerce: A zero-shot comparative study of GPT and claude models","authors":"Konstantinos I. Roumeliotis ,&nbsp;Nikolaos D. Tselikas ,&nbsp;Dimitrios K. Nasiopoulos","doi":"10.1016/j.nlp.2025.100142","DOIUrl":null,"url":null,"abstract":"<div><div>In the rapidly evolving e-commerce landscape, efficient and accurate product classification is essential for enhancing customer experience and streamlining operations. Traditional product classification methods, which depend heavily on labeled data and manual effort, struggle with scalability and adaptability to diverse product categories. This study explores the transformative potential of large language models (LLMs) for zero-shot product classification in e-commerce, addressing the challenge of automating product categorization without prior labeled training data. We evaluate the performance of four state-of-the-art LLMs — GPT-4o, GPT-4o mini, Claude 3.5 Sonnet, and Claude 3.5 Haiku — on a diverse dataset of 248 product categories, each containing 20 samples, structured into 8 subsets. Each model performs zero-shot classification, assigning products to predefined categories without prior exposure. Our findings reveal significant variations in classification accuracy across models, with certain LLMs demonstrating superior scalability and adaptability for real-world e-commerce applications. Based on these insights, we developed an API software to integrate the top-performing models into e-commerce systems, enhancing automation and efficiency. This study underscores the transformative role of LLMs in revolutionizing e-commerce workflows and recommends their adoption for scalable, intelligent product classification.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"11 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving e-commerce landscape, efficient and accurate product classification is essential for enhancing customer experience and streamlining operations. Traditional product classification methods, which depend heavily on labeled data and manual effort, struggle with scalability and adaptability to diverse product categories. This study explores the transformative potential of large language models (LLMs) for zero-shot product classification in e-commerce, addressing the challenge of automating product categorization without prior labeled training data. We evaluate the performance of four state-of-the-art LLMs — GPT-4o, GPT-4o mini, Claude 3.5 Sonnet, and Claude 3.5 Haiku — on a diverse dataset of 248 product categories, each containing 20 samples, structured into 8 subsets. Each model performs zero-shot classification, assigning products to predefined categories without prior exposure. Our findings reveal significant variations in classification accuracy across models, with certain LLMs demonstrating superior scalability and adaptability for real-world e-commerce applications. Based on these insights, we developed an API software to integrate the top-performing models into e-commerce systems, enhancing automation and efficiency. This study underscores the transformative role of LLMs in revolutionizing e-commerce workflows and recommends their adoption for scalable, intelligent product classification.
电子商务中产品分类的法学硕士:GPT与claude模型的零射击比较研究
在快速发展的电子商务环境中,高效和准确的产品分类对于提高客户体验和简化操作至关重要。传统的产品分类方法严重依赖于标记数据和人工操作,难以适应不同产品类别的可扩展性和适应性。本研究探讨了大型语言模型(llm)在电子商务中零概率产品分类的变革潜力,解决了在没有事先标记的训练数据的情况下自动化产品分类的挑战。我们评估了四个最先进的llm - gpt - 40, gpt - 40 mini, Claude 3.5十四行诗和Claude 3.5俳句-在248个产品类别的不同数据集上的性能,每个产品类别包含20个样本,分为8个子集。每个模型执行零射击分类,将产品分配到预定义的类别,而无需事先曝光。我们的研究结果揭示了不同模型在分类准确性上的显著差异,某些llm在现实世界的电子商务应用中表现出卓越的可扩展性和适应性。基于这些见解,我们开发了一个API软件,将表现最好的模型集成到电子商务系统中,提高自动化和效率。这项研究强调了法学硕士在电子商务工作流程革命中的变革作用,并建议将其用于可扩展的智能产品分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信