Multi-scale remote sensing for sustainable citrus farming: Predicting canopy nitrogen content using UAV-satellite data fusion

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Dagan Avioz , Raphael Linker , Eran Raveh , Shahar Baram , Tarin Paz-Kagan
{"title":"Multi-scale remote sensing for sustainable citrus farming: Predicting canopy nitrogen content using UAV-satellite data fusion","authors":"Dagan Avioz ,&nbsp;Raphael Linker ,&nbsp;Eran Raveh ,&nbsp;Shahar Baram ,&nbsp;Tarin Paz-Kagan","doi":"10.1016/j.atech.2025.100906","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate monitoring of nitrogen (N) levels, while accounting for spatiotemporal variability is crucial for optimizing fertilization in citrus orchards. Traditional methods, such as frequent leaf and soil sampling followed by laboratory analysis, are costly, labor-intensive, and prone to human error. Remote sensing (RS) technologies, including unmanned aerial vehicles (UAVs) and satellite platforms, offer scalable and precise alternatives for N management. However, integrating these platforms poses challenges due to significant differences in spatial, temporal, and spectral resolution. This study presents a novel approach incorporating multispectral and temporal data from UAVs and Sentinel-2 satellites to estimate canopy N content (CNC) in citrus orchards. This method captures spatiotemporal variability across multiple citrus cultivars, aiming to enhance nitrogen use efficiency (NUE) while reducing environmental impact, ultimately promoting sustainable orchard management practices. The study was conducted in commercial citrus plots in the Hefer Valley, Israel, and spanned two phases. The first phase (May 2019 to April 2022) focused on four plots of the 'Newhall' cultivar, while the second phase expanded to twelve additional plots featuring five different citrus cultivars. The methodology consisted of six key steps: (1) Leaf samples from the study area were collected for laboratory nitrogen (N) analysis. (2) Acquiring and preprocessing bimonthly UAV multispectral images and Sentinel-2 satellite images to ensure data quality and consistency. (3) Segmenting individual trees using UAV imagery and extracting structural features through Structure-from-Motion (SfM) photogrammetry. (4) Processing images and extracting spectral and structural features relevant to N estimation. (5) Developing Random Forest (RF) models to estimate CNC using UAV-derived vegetation indices (VIs) and SfM data and combining these with Sentinel-2 VIs to generate canopy-scale CNC heatmaps. (6) Analyzing the relationship between CNC and yield to understand nitrogen dynamics and their impact on productivity. The integrated RF model, which combined UAV-VIs, Sentinel-2 VIs, and SfM-derived structural data, achieved superior performance (R² = 0.80, RMSE = 0.17 kg/m²) compared to models relying solely on UAV-VIs (R² = 0.68, RMSE = 0.23 kg/m²) or Sentinel-2 VIs (R² = 0.48, RMSE = 0.30 kg/m²). Additionally, CNC expressed as mass per tree demonstrated a strong positive correlation with yield (R² = 0.66), highlighting the relationship between nitrogen dynamics and orchard productivity. These results underscore the robustness of the integrated model and the clear advantage of multi-platform data fusion over single-source approaches. The study provides compelling evidence for the potential of combining UAV and Sentinel-2 data to improve CNC estimation and its correlation with yield in citrus orchards. The findings contribute to advancements in precision agriculture by offering a scalable, data-driven framework to enhance nutrient management and support sustainable orchard practices.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100906"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277237552500139X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate monitoring of nitrogen (N) levels, while accounting for spatiotemporal variability is crucial for optimizing fertilization in citrus orchards. Traditional methods, such as frequent leaf and soil sampling followed by laboratory analysis, are costly, labor-intensive, and prone to human error. Remote sensing (RS) technologies, including unmanned aerial vehicles (UAVs) and satellite platforms, offer scalable and precise alternatives for N management. However, integrating these platforms poses challenges due to significant differences in spatial, temporal, and spectral resolution. This study presents a novel approach incorporating multispectral and temporal data from UAVs and Sentinel-2 satellites to estimate canopy N content (CNC) in citrus orchards. This method captures spatiotemporal variability across multiple citrus cultivars, aiming to enhance nitrogen use efficiency (NUE) while reducing environmental impact, ultimately promoting sustainable orchard management practices. The study was conducted in commercial citrus plots in the Hefer Valley, Israel, and spanned two phases. The first phase (May 2019 to April 2022) focused on four plots of the 'Newhall' cultivar, while the second phase expanded to twelve additional plots featuring five different citrus cultivars. The methodology consisted of six key steps: (1) Leaf samples from the study area were collected for laboratory nitrogen (N) analysis. (2) Acquiring and preprocessing bimonthly UAV multispectral images and Sentinel-2 satellite images to ensure data quality and consistency. (3) Segmenting individual trees using UAV imagery and extracting structural features through Structure-from-Motion (SfM) photogrammetry. (4) Processing images and extracting spectral and structural features relevant to N estimation. (5) Developing Random Forest (RF) models to estimate CNC using UAV-derived vegetation indices (VIs) and SfM data and combining these with Sentinel-2 VIs to generate canopy-scale CNC heatmaps. (6) Analyzing the relationship between CNC and yield to understand nitrogen dynamics and their impact on productivity. The integrated RF model, which combined UAV-VIs, Sentinel-2 VIs, and SfM-derived structural data, achieved superior performance (R² = 0.80, RMSE = 0.17 kg/m²) compared to models relying solely on UAV-VIs (R² = 0.68, RMSE = 0.23 kg/m²) or Sentinel-2 VIs (R² = 0.48, RMSE = 0.30 kg/m²). Additionally, CNC expressed as mass per tree demonstrated a strong positive correlation with yield (R² = 0.66), highlighting the relationship between nitrogen dynamics and orchard productivity. These results underscore the robustness of the integrated model and the clear advantage of multi-platform data fusion over single-source approaches. The study provides compelling evidence for the potential of combining UAV and Sentinel-2 data to improve CNC estimation and its correlation with yield in citrus orchards. The findings contribute to advancements in precision agriculture by offering a scalable, data-driven framework to enhance nutrient management and support sustainable orchard practices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信