In Situ experimental study of talc carbonation in C-O-H fluid: Implications for the deep carbon cycle

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Mengjun Xiong , Zhi Zheng , Jiangzhi Chen , Xia Zhao , Shenghua Mei
{"title":"In Situ experimental study of talc carbonation in C-O-H fluid: Implications for the deep carbon cycle","authors":"Mengjun Xiong ,&nbsp;Zhi Zheng ,&nbsp;Jiangzhi Chen ,&nbsp;Xia Zhao ,&nbsp;Shenghua Mei","doi":"10.1016/j.gca.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div>The physical and chemical behavior of carbonate minerals during subduction is key to understanding the carbon cycle process in the deep Earth. Using diamond anvil cells combined with <em>in situ</em> Raman spectroscopy, we investigated talc stability at 200–550 ℃ and 0.5–3 GPa, corresponding to subduction zone conditions. Results demonstrate that talc readily reacts with C-O–H fluid to form magnesite at <em>T</em> &gt; 250 ℃ and <em>P</em> &gt; 1 GPa, highlighting the efficient CO<sub>2</sub> sequestration via a stepwise carbonation process, with talc carbonation rates positively correlated with both temperature and pressure. Consequently, C-O–H fluid-driven talc carbonation effectively sequesters CO<sub>2</sub> from the fluid into newly formed thermodynamically more stable magnesite, implying that it has great potential for transforming talc into magnesite in the deep Earth. We have also revealed the thermodynamic conditions of the talc carbonation process and demonstrated that the stability of talc in contact with the fluid is significantly lower than that under anhydrous conditions. Furthermore, enhanced CO<sub>2</sub> sequestration via talc carbonation at elevated pressures and temperatures may compensate for the relatively inefficient serpentinite carbonation under the subarc. Therefore, the findings provide critical insights into the thermodynamic conditions favoring talc carbonation and contribute to a deeper understanding of carbon cycling in the Earth’s interior.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"396 ","pages":"Pages 146-158"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725001310","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The physical and chemical behavior of carbonate minerals during subduction is key to understanding the carbon cycle process in the deep Earth. Using diamond anvil cells combined with in situ Raman spectroscopy, we investigated talc stability at 200–550 ℃ and 0.5–3 GPa, corresponding to subduction zone conditions. Results demonstrate that talc readily reacts with C-O–H fluid to form magnesite at T > 250 ℃ and P > 1 GPa, highlighting the efficient CO2 sequestration via a stepwise carbonation process, with talc carbonation rates positively correlated with both temperature and pressure. Consequently, C-O–H fluid-driven talc carbonation effectively sequesters CO2 from the fluid into newly formed thermodynamically more stable magnesite, implying that it has great potential for transforming talc into magnesite in the deep Earth. We have also revealed the thermodynamic conditions of the talc carbonation process and demonstrated that the stability of talc in contact with the fluid is significantly lower than that under anhydrous conditions. Furthermore, enhanced CO2 sequestration via talc carbonation at elevated pressures and temperatures may compensate for the relatively inefficient serpentinite carbonation under the subarc. Therefore, the findings provide critical insights into the thermodynamic conditions favoring talc carbonation and contribute to a deeper understanding of carbon cycling in the Earth’s interior.
C-O-H流体中滑石碳酸化的原位实验研究:对深层碳循环的启示
碳酸盐矿物在俯冲过程中的物理化学行为是了解地球深部碳循环过程的关键。利用金刚石砧细胞结合原位拉曼光谱,我们研究了滑石在200-550℃、0.5-3 GPa条件下的稳定性,对应于俯冲带条件。结果表明,滑石在高温下容易与C-O-H流体反应生成菱镁矿;250℃,P >;1 GPa,表明滑石粉的碳化速率与温度和压力呈正相关,通过分步碳化过程有效地封存了二氧化碳。因此,C-O-H流体驱动的滑石碳酸化作用有效地将流体中的CO2封存到新形成的热力学更稳定的菱镁矿中,这意味着它在地球深部将滑石转化为菱镁矿的潜力很大。我们还揭示了滑石碳酸化过程的热力学条件,并证明滑石在与流体接触时的稳定性明显低于无水条件下的稳定性。此外,在高压和高温下通过滑石碳酸化增强的CO2封存可以弥补亚弧下相对低效的蛇纹岩碳酸化。因此,这些发现提供了对有利于滑石碳化的热力学条件的关键见解,并有助于更深入地了解地球内部的碳循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信