{"title":"EDA complex photochemistry as a strategy for C–S bond formation","authors":"Helena F. Piedra , Illán Tagarro , Manuel Plaza","doi":"10.1039/d5qo00258c","DOIUrl":null,"url":null,"abstract":"<div><div>This review highlights the use of photochemically excited electron donor–acceptor (EDA) complexes as a sustainable, modern approach to carbon–sulfur bond formation. C–S bonds are essential in various fields, including pharmaceuticals, materials science, and agrochemicals, yet traditional synthetic methods often face challenges such as harsh conditions and high costs. EDA complexes, formed through non-covalent interactions between electron-rich donors and electron-deficient acceptors, undergo visible-light-induced single-electron transfer (SET) to generate reactive radical intermediates. These intermediates enable efficient, selective, and environmentally friendly C–S bond formation under mild conditions. The article explores recent examples of practical applications of these reactions, including their mechanism, providing a comprehensive understanding of these cutting-edge methods and their potential to advance sustainable synthetic chemistry.</div></div>","PeriodicalId":94379,"journal":{"name":"Organic chemistry frontiers : an international journal of organic chemistry","volume":"12 13","pages":"Pages 3920-3941"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic chemistry frontiers : an international journal of organic chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052412925002232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review highlights the use of photochemically excited electron donor–acceptor (EDA) complexes as a sustainable, modern approach to carbon–sulfur bond formation. C–S bonds are essential in various fields, including pharmaceuticals, materials science, and agrochemicals, yet traditional synthetic methods often face challenges such as harsh conditions and high costs. EDA complexes, formed through non-covalent interactions between electron-rich donors and electron-deficient acceptors, undergo visible-light-induced single-electron transfer (SET) to generate reactive radical intermediates. These intermediates enable efficient, selective, and environmentally friendly C–S bond formation under mild conditions. The article explores recent examples of practical applications of these reactions, including their mechanism, providing a comprehensive understanding of these cutting-edge methods and their potential to advance sustainable synthetic chemistry.