Ai Niitsu, Andrew R. Thomson, Alistair J. Scott, Jason T. Sengel, Jaewoon Jung, Kozhinjampara R. Mahendran, Mikiko Sodeoka, Hagan Bayley, Yuji Sugita, Derek N. Woolfson, Mark I. Wallace
{"title":"Rational Design Principles for De Novo α-Helical Peptide Barrels with Dynamic Conductive Channels","authors":"Ai Niitsu, Andrew R. Thomson, Alistair J. Scott, Jason T. Sengel, Jaewoon Jung, Kozhinjampara R. Mahendran, Mikiko Sodeoka, Hagan Bayley, Yuji Sugita, Derek N. Woolfson, Mark I. Wallace","doi":"10.1021/jacs.4c13933","DOIUrl":null,"url":null,"abstract":"Despite advances in peptide and protein design, the rational design of membrane-spanning peptides that form conducting channels remains challenging due to our imperfect understanding of the sequence-to-structure relationships that drive membrane insertion, assembly, and conductance. Here, we describe the design and computational and experimental characterization of a series of coiled coil-based peptides that form transmembrane α-helical barrels with conductive channels. Through a combination of rational and computational design, we obtain barrels with 5 to 7 helices, as characterized in detergent micelles. In lipid bilayers, these peptide assemblies exhibit two conductance states with relative populations dependent on the applied potential: (i) low-conductance states that correlate with variations in the designed amino-acid sequences and modeled coiled-coil barrel geometries, indicating stable transmembrane α-helical barrels; and (ii) high-conductance states in which single channels change size in discrete steps. Notably, the high-conductance states are similar for all peptides in contrast to the low-conductance states. This indicates the formation of large, dynamic channels, as observed in natural barrel-stave peptide channels. These findings establish rational routes to design and tune functional membrane-spanning peptide channels with specific conductance and geometry.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"183 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13933","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advances in peptide and protein design, the rational design of membrane-spanning peptides that form conducting channels remains challenging due to our imperfect understanding of the sequence-to-structure relationships that drive membrane insertion, assembly, and conductance. Here, we describe the design and computational and experimental characterization of a series of coiled coil-based peptides that form transmembrane α-helical barrels with conductive channels. Through a combination of rational and computational design, we obtain barrels with 5 to 7 helices, as characterized in detergent micelles. In lipid bilayers, these peptide assemblies exhibit two conductance states with relative populations dependent on the applied potential: (i) low-conductance states that correlate with variations in the designed amino-acid sequences and modeled coiled-coil barrel geometries, indicating stable transmembrane α-helical barrels; and (ii) high-conductance states in which single channels change size in discrete steps. Notably, the high-conductance states are similar for all peptides in contrast to the low-conductance states. This indicates the formation of large, dynamic channels, as observed in natural barrel-stave peptide channels. These findings establish rational routes to design and tune functional membrane-spanning peptide channels with specific conductance and geometry.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.