Analysis of the impact of protein conformational dynamics and intermolecular interactions on water flux through TIP3;1 aquaporins of Zea mays L.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Diego Fernando Nieto-Giraldo, José Mauricio Rodas Rodríguez, Javier Ignacio Torres-Osorio
{"title":"Analysis of the impact of protein conformational dynamics and intermolecular interactions on water flux through TIP3;1 aquaporins of Zea mays L.","authors":"Diego Fernando Nieto-Giraldo, José Mauricio Rodas Rodríguez, Javier Ignacio Torres-Osorio","doi":"10.1039/d4cp04661g","DOIUrl":null,"url":null,"abstract":"The discovery of aquaporins (AQPs) in 1992 had a profound impact on our understanding of the mechanisms underlying the transport of substances across cell membranes. To further understand water mobilization through AQPs, this study focuses on the characterization of water flux through the TIP3;1 aquaporins of <em>Zea mays</em> L. using molecular dynamics. The primary objective is to elucidate how protein–water intermolecular interactions and protein conformational dynamics impact water mobility across the cell membrane. To conduct this analysis, the three-dimensional structure of TIP3;1 was modeled using AlphaFold2, from which the complete system was constructed. This system consisted of a homotetramer of TIP3;1 immersed in a fragment of cell membrane and solvated with water molecules and ions. Subsequently, molecular dynamics simulations were conducted for 90 ns, resulting in the determination of an osmotic permeability coefficient (<em>p</em><small><sub>f</sub></small>) of 0.8172 ± 0.146 × 10<small><sup>−14</sup></small> cm<small><sup>3</sup></small> s<small><sup>−1</sup></small>. In general, the mobility of water along the single-file water channel is influenced by the complex interplay of protein conformational dynamics and hydrogen bonding. The conformational dynamics of the protein channel modify the pore radius available for the passage of water, which affects the frequency of protein–water interactions and consequently influences the mobility of water in the channel. This study contributes to our understanding of the molecular mechanisms by which AQP activity is modulated without involving changes in protein chemical composition.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"36 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04661g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of aquaporins (AQPs) in 1992 had a profound impact on our understanding of the mechanisms underlying the transport of substances across cell membranes. To further understand water mobilization through AQPs, this study focuses on the characterization of water flux through the TIP3;1 aquaporins of Zea mays L. using molecular dynamics. The primary objective is to elucidate how protein–water intermolecular interactions and protein conformational dynamics impact water mobility across the cell membrane. To conduct this analysis, the three-dimensional structure of TIP3;1 was modeled using AlphaFold2, from which the complete system was constructed. This system consisted of a homotetramer of TIP3;1 immersed in a fragment of cell membrane and solvated with water molecules and ions. Subsequently, molecular dynamics simulations were conducted for 90 ns, resulting in the determination of an osmotic permeability coefficient (pf) of 0.8172 ± 0.146 × 10−14 cm3 s−1. In general, the mobility of water along the single-file water channel is influenced by the complex interplay of protein conformational dynamics and hydrogen bonding. The conformational dynamics of the protein channel modify the pore radius available for the passage of water, which affects the frequency of protein–water interactions and consequently influences the mobility of water in the channel. This study contributes to our understanding of the molecular mechanisms by which AQP activity is modulated without involving changes in protein chemical composition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信