Advances in 3D Neural Stylization: A Survey

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yingshu Chen, Guocheng Shao, Ka Chun Shum, Binh-Son Hua, Sai-Kit Yeung
{"title":"Advances in 3D Neural Stylization: A Survey","authors":"Yingshu Chen, Guocheng Shao, Ka Chun Shum, Binh-Son Hua, Sai-Kit Yeung","doi":"10.1007/s11263-025-02403-9","DOIUrl":null,"url":null,"abstract":"<p>Modern artificial intelligence offers a novel and transformative approach to creating digital art across diverse styles and modalities like images, videos and 3D data, unleashing the power of creativity and revolutionizing the way that we perceive and interact with visual content. This paper reports on recent advances in stylized 3D asset creation and manipulation with the expressive power of neural networks. We establish a taxonomy for neural stylization, considering crucial design choices such as scene representation, guidance data, optimization strategies, and output styles. Building on such taxonomy, our survey first revisits the background of neural stylization on 2D images, and then presents in-depth discussions on recent neural stylization methods for 3D data, accompanied by a benchmark evaluating selected mesh and neural field stylization methods. Based on the insights gained from the survey, we highlight the practical significance, open challenges, future research, and potential impacts of neural stylization, which facilitates researchers and practitioners to navigate the rapidly evolving landscape of 3D content creation using modern artificial intelligence.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"10 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02403-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Modern artificial intelligence offers a novel and transformative approach to creating digital art across diverse styles and modalities like images, videos and 3D data, unleashing the power of creativity and revolutionizing the way that we perceive and interact with visual content. This paper reports on recent advances in stylized 3D asset creation and manipulation with the expressive power of neural networks. We establish a taxonomy for neural stylization, considering crucial design choices such as scene representation, guidance data, optimization strategies, and output styles. Building on such taxonomy, our survey first revisits the background of neural stylization on 2D images, and then presents in-depth discussions on recent neural stylization methods for 3D data, accompanied by a benchmark evaluating selected mesh and neural field stylization methods. Based on the insights gained from the survey, we highlight the practical significance, open challenges, future research, and potential impacts of neural stylization, which facilitates researchers and practitioners to navigate the rapidly evolving landscape of 3D content creation using modern artificial intelligence.

三维神经程式化研究进展综述
现代人工智能提供了一种新颖的、变革性的方法来创造不同风格和模式的数字艺术,如图像、视频和3D数据,释放创造力的力量,彻底改变我们感知和与视觉内容互动的方式。本文报告了最近在风格化的3D资产创建和操作与神经网络的表现力的进展。我们建立了神经风格化的分类,考虑了关键的设计选择,如场景表示、引导数据、优化策略和输出样式。在这种分类的基础上,我们的调查首先回顾了2D图像的神经风格化背景,然后深入讨论了最近用于3D数据的神经风格化方法,并对选定的网格和神经场风格化方法进行了基准评估。基于从调查中获得的见解,我们强调了神经风格化的现实意义、开放的挑战、未来的研究和潜在的影响,这有助于研究人员和从业者利用现代人工智能在快速发展的3D内容创作领域中导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信