Genetic Algorithm to Obtain Accurate Force Constants in Graphene

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Wenjing Liu, Jinrong Xu, Shulei Gong, Wenrui Huang, Jiahui Hao, Jiangying Yu, Kai Huang, Ying Wang
{"title":"Genetic Algorithm to Obtain Accurate Force Constants in Graphene","authors":"Wenjing Liu, Jinrong Xu, Shulei Gong, Wenrui Huang, Jiahui Hao, Jiangying Yu, Kai Huang, Ying Wang","doi":"10.1002/adts.202500124","DOIUrl":null,"url":null,"abstract":"As fundamental quantum mechanical descriptors of crystalline lattice vibrational properties, phonons play a critical role in determining numerous macroscopic physical characteristics spanning thermal transport behavior and thermodynamic response functions. The precise determination of complete phonon spectra and their corresponding interatomic force constants continues to present substantial computational challenges, particularly in architecturally complex material systems. In this study, using graphene as a prototypical system, theoretical derivation of the phonon dispersion relations is presented through rigorous lattice dynamics formalism. The first- through eighth-nearest-neighbor force constants in the dynamical matrix are systematically determined via a self-consistent iterative genetic algorithm optimization framework. These derived parameters are further systematically validated through density functional theory simulations. The optimized interatomic force constants demonstrate remarkable fidelity in reproducing both the acoustic and optical phonon branches across the entire Brillouin zone, thereby establishing a comprehensive theoretical foundation for predictive calculations of temperature-dependent thermodynamic properties. The developed genetic algorithm optimization methodology shows significant transferability to diverse material systems, enabling precise alignment with inelastic neutron scattering and Raman spectroscopy measurements. This advancement provides a generalized computational tool for investigating lattice dynamics in complex material systems.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"63 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500124","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As fundamental quantum mechanical descriptors of crystalline lattice vibrational properties, phonons play a critical role in determining numerous macroscopic physical characteristics spanning thermal transport behavior and thermodynamic response functions. The precise determination of complete phonon spectra and their corresponding interatomic force constants continues to present substantial computational challenges, particularly in architecturally complex material systems. In this study, using graphene as a prototypical system, theoretical derivation of the phonon dispersion relations is presented through rigorous lattice dynamics formalism. The first- through eighth-nearest-neighbor force constants in the dynamical matrix are systematically determined via a self-consistent iterative genetic algorithm optimization framework. These derived parameters are further systematically validated through density functional theory simulations. The optimized interatomic force constants demonstrate remarkable fidelity in reproducing both the acoustic and optical phonon branches across the entire Brillouin zone, thereby establishing a comprehensive theoretical foundation for predictive calculations of temperature-dependent thermodynamic properties. The developed genetic algorithm optimization methodology shows significant transferability to diverse material systems, enabling precise alignment with inelastic neutron scattering and Raman spectroscopy measurements. This advancement provides a generalized computational tool for investigating lattice dynamics in complex material systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信