See Degraded Objects: A Physics-Guided Approach for Object Detection in Adverse Environments

Weifeng Liu;Jian Pang;Bingfeng Zhang;Jin Wang;Baodi Liu;Dapeng Tao
{"title":"See Degraded Objects: A Physics-Guided Approach for Object Detection in Adverse Environments","authors":"Weifeng Liu;Jian Pang;Bingfeng Zhang;Jin Wang;Baodi Liu;Dapeng Tao","doi":"10.1109/TIP.2025.3551533","DOIUrl":null,"url":null,"abstract":"In adverse environments, the detector often fails to detect degraded objects because they are almost invisible and their features are weakened by the environment. Common approaches involve image enhancement to support detection, but they inevitably introduce human-invisible noise that negatively impacts the detector. In this work, we propose a physics-guided approach for object detection in adverse environments, which gives a straightforward solution that injects the physical priors into the detector, enabling it to detect poorly visible objects. The physical priors, derived from the imaging mechanism and image property, include environment prior and frequency prior. The environment prior is generated from the physical model, e.g., the atmospheric model, which reflects the density of environmental noise. The frequency prior is explored based on an observation that the amplitude spectrum could highlight object regions from the background. The proposed two priors are complementary in principle. Furthermore, we present a physics-guided loss that incorporates a novel weight item, which is estimated by applying the membership function on physical priors and could capture the extent of degradation. By backpropagating the physics-guided loss, physics knowledge is injected into the detector to aid in locating degraded objects. We conduct experiments in synthetic foggy environment, real foggy environment, and real underwater scenario. The results demonstrate that our method is effective and achieves state-of-the-art performance. The code is available at <uri>https://github.com/PangJian123/See-Degraded-Objects</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"2198-2212"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938273/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In adverse environments, the detector often fails to detect degraded objects because they are almost invisible and their features are weakened by the environment. Common approaches involve image enhancement to support detection, but they inevitably introduce human-invisible noise that negatively impacts the detector. In this work, we propose a physics-guided approach for object detection in adverse environments, which gives a straightforward solution that injects the physical priors into the detector, enabling it to detect poorly visible objects. The physical priors, derived from the imaging mechanism and image property, include environment prior and frequency prior. The environment prior is generated from the physical model, e.g., the atmospheric model, which reflects the density of environmental noise. The frequency prior is explored based on an observation that the amplitude spectrum could highlight object regions from the background. The proposed two priors are complementary in principle. Furthermore, we present a physics-guided loss that incorporates a novel weight item, which is estimated by applying the membership function on physical priors and could capture the extent of degradation. By backpropagating the physics-guided loss, physics knowledge is injected into the detector to aid in locating degraded objects. We conduct experiments in synthetic foggy environment, real foggy environment, and real underwater scenario. The results demonstrate that our method is effective and achieves state-of-the-art performance. The code is available at https://github.com/PangJian123/See-Degraded-Objects.
参见退化对象:在不利环境中进行对象检测的物理指导方法
在恶劣环境下,由于退化物体几乎不可见,其特征被环境削弱,检测器往往无法检测到退化物体。常见的方法包括图像增强来支持检测,但它们不可避免地引入了对检测器产生负面影响的人类看不见的噪声。在这项工作中,我们提出了一种在不利环境中进行物体检测的物理指导方法,该方法提供了一种直接的解决方案,将物理先验注入检测器,使其能够检测到不可见的物体。物理先验包括环境先验和频率先验,由成像机理和图像特性推导而来。环境先验是由物理模型产生的,例如大气模型,它反映了环境噪声的密度。基于对振幅谱可以突出背景中目标区域的观察,探讨了频率先验。提出的两种先验原则是互补的。此外,我们提出了一种物理引导损失,该损失包含一个新的权重项,该权重项通过对物理先验应用隶属函数来估计,并且可以捕获退化的程度。通过反向传播物理引导的损耗,物理知识被注入到探测器中,以帮助定位退化的物体。我们分别在合成雾环境、真实雾环境和真实水下场景下进行实验。结果表明,我们的方法是有效的,达到了最先进的性能。代码可在https://github.com/PangJian123/See-Degraded-Objects上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信