{"title":"Trends and perspectives in deterministic MINLP optimization for integrated planning, scheduling, control, and design of chemical processes","authors":"David A. Liñán, Luis A. Ricardez-Sandoval","doi":"10.1515/revce-2024-0064","DOIUrl":null,"url":null,"abstract":"Mixed integer nonlinear programming (MINLP) in chemical engineering originated as a tool for solving optimal process synthesis and design problems. Since then, the application of MINLP has expanded to encompass control and operational decisions that are in line with the arising challenges faced by the industry, e.g., sustainability, competitive markets, and volatile supply chain environments. Nowadays, process plants are transitioning from traditional manufacturing practices to automated solutions able to integrate decision-making within manufacturing enterprises. This paradigm shift aims to increase profits, optimize resource utilization efficiency, promote long-term sustainability, minimize waste, and enhance responsiveness under uncertainties and perturbations. Accordingly, the development of reliable, computationally efficient, and robust MINLP algorithms capable of simultaneously handling process design, planning, scheduling, or control decisions are crucial to achieving Industry 4.0 integration goals. This work explores potential research opportunities and recent advances toward the development of integrated decision-making frameworks, focusing on their underlying state-of-the-art optimization tools. We provide an overview of emerging deterministic MINLP optimization algorithms for simultaneous decision-making problems. Furthermore, we constructively discuss the versatility and limitations of these optimization tools. We also highlight how novel optimization theories, both within and outside the chemical engineering domain, can be incorporated into advanced MINLP frameworks suitable for process integration.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2024-0064","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed integer nonlinear programming (MINLP) in chemical engineering originated as a tool for solving optimal process synthesis and design problems. Since then, the application of MINLP has expanded to encompass control and operational decisions that are in line with the arising challenges faced by the industry, e.g., sustainability, competitive markets, and volatile supply chain environments. Nowadays, process plants are transitioning from traditional manufacturing practices to automated solutions able to integrate decision-making within manufacturing enterprises. This paradigm shift aims to increase profits, optimize resource utilization efficiency, promote long-term sustainability, minimize waste, and enhance responsiveness under uncertainties and perturbations. Accordingly, the development of reliable, computationally efficient, and robust MINLP algorithms capable of simultaneously handling process design, planning, scheduling, or control decisions are crucial to achieving Industry 4.0 integration goals. This work explores potential research opportunities and recent advances toward the development of integrated decision-making frameworks, focusing on their underlying state-of-the-art optimization tools. We provide an overview of emerging deterministic MINLP optimization algorithms for simultaneous decision-making problems. Furthermore, we constructively discuss the versatility and limitations of these optimization tools. We also highlight how novel optimization theories, both within and outside the chemical engineering domain, can be incorporated into advanced MINLP frameworks suitable for process integration.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.