Land surface temperature predicts mortality due to chronic obstructive pulmonary disease: a study based on climate variables and impact machine learning.
Alireza Mohammadi, Bardia Mashhoodi, Ali Shamsoddini, Elahe Pishgar, Robert Bergquist
{"title":"Land surface temperature predicts mortality due to chronic obstructive pulmonary disease: a study based on climate variables and impact machine learning.","authors":"Alireza Mohammadi, Bardia Mashhoodi, Ali Shamsoddini, Elahe Pishgar, Robert Bergquist","doi":"10.4081/gh.2025.1319","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chronic Obstructive Pulmonary Disease (COPD) mortality rates and global warming have been in the focus of scientists and policymakers in the past decade. The long-term shifts in temperature and weather patterns, commonly referred to as climate change, is an important public health issue, especially with regard to COPD.</p><p><strong>Method: </strong>Using the most recent county-level age-adjusted COPD mortality rates among adults older than 25 years, this study aimed to investigate the spatial trajectory of COPD in the United States between 2001 and 2020. Global Moran's I was used to investigate spatial relationships utilising data from Terra satellite for night-time land surface temperatures (LSTnt), which served as an indicator of warming within the same time period across the United States. The forest-based classification and regression model (FCR) was applied to predict mortality rates.</p><p><strong>Results: </strong>It was found that COPD mortality over the 20-year period was spatially clustered in certain counties. Moran's I statistic (I=0.18) showed that the COPD mortality rates increased with LSTnt, with the strongest spatial association in the eastern and south-eastern counties. The FCR model was able to predict mortality rates based on LSTnt values in the study area with a R2 value of 0.68.</p><p><strong>Conclusion: </strong>Policymakers in the United States could use the findings of this study to develop long-term spatial and health-related strategies to reduce the vulnerability to global warming of patients with acute respiratory symptoms.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2025.1319","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Chronic Obstructive Pulmonary Disease (COPD) mortality rates and global warming have been in the focus of scientists and policymakers in the past decade. The long-term shifts in temperature and weather patterns, commonly referred to as climate change, is an important public health issue, especially with regard to COPD.
Method: Using the most recent county-level age-adjusted COPD mortality rates among adults older than 25 years, this study aimed to investigate the spatial trajectory of COPD in the United States between 2001 and 2020. Global Moran's I was used to investigate spatial relationships utilising data from Terra satellite for night-time land surface temperatures (LSTnt), which served as an indicator of warming within the same time period across the United States. The forest-based classification and regression model (FCR) was applied to predict mortality rates.
Results: It was found that COPD mortality over the 20-year period was spatially clustered in certain counties. Moran's I statistic (I=0.18) showed that the COPD mortality rates increased with LSTnt, with the strongest spatial association in the eastern and south-eastern counties. The FCR model was able to predict mortality rates based on LSTnt values in the study area with a R2 value of 0.68.
Conclusion: Policymakers in the United States could use the findings of this study to develop long-term spatial and health-related strategies to reduce the vulnerability to global warming of patients with acute respiratory symptoms.
期刊介绍:
The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.