Nomlabofusp, a Fusion Protein of Human Frataxin and a Cell Penetrant Peptide, Delivers Mature and Functional Frataxin into Mitochondria.

IF 5 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Matthew G Baile, John Jones, Natasha Sahr, Gopi Shankar
{"title":"Nomlabofusp, a Fusion Protein of Human Frataxin and a Cell Penetrant Peptide, Delivers Mature and Functional Frataxin into Mitochondria.","authors":"Matthew G Baile, John Jones, Natasha Sahr, Gopi Shankar","doi":"10.1208/s12248-025-01054-5","DOIUrl":null,"url":null,"abstract":"<p><p>Friedreich's ataxia is a rare, progressive, genetic disorder, the root cause of which is a significant deficiency in the mitochondrial protein frataxin. Frataxin is ubiquitously expressed, but its deficiency results in a variety of debilitating symptoms, with disease severity, rate of progression and age of onset inversely correlating with tissue frataxin levels. Nomlabofusp is a novel cell penetrant peptide based recombinant fusion protein designed to enter cells and deliver human FXN into the mitochondria. Using immunofluorescence staining and western blot we show that frataxin delivered by nomlabofusp is detected in the mitochondria of H9c2 and SH-SY5Y cells. Also in these cells, and in C2C12 and HEK293 cells, we demonstrate the presence of mature frataxin after nomlabofusp exposure. Finally, using buccal swab tissue samples taken from study subjects in a Phase 1 clinical trial who received nomlabofusp, we show increases in mature frataxin levels along with marked changes in gene expression post-administration suggesting intracellular pharmacodynamic activity. Together, these results demonstrate that nomlabofusp enters the cell and localizes to the mitochondria, releasing mature frataxin that appears to be biologically active and support the use of nomlabofusp as a potential treatment for patients with Friedreich's ataxia.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 3","pages":"68"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01054-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Friedreich's ataxia is a rare, progressive, genetic disorder, the root cause of which is a significant deficiency in the mitochondrial protein frataxin. Frataxin is ubiquitously expressed, but its deficiency results in a variety of debilitating symptoms, with disease severity, rate of progression and age of onset inversely correlating with tissue frataxin levels. Nomlabofusp is a novel cell penetrant peptide based recombinant fusion protein designed to enter cells and deliver human FXN into the mitochondria. Using immunofluorescence staining and western blot we show that frataxin delivered by nomlabofusp is detected in the mitochondria of H9c2 and SH-SY5Y cells. Also in these cells, and in C2C12 and HEK293 cells, we demonstrate the presence of mature frataxin after nomlabofusp exposure. Finally, using buccal swab tissue samples taken from study subjects in a Phase 1 clinical trial who received nomlabofusp, we show increases in mature frataxin levels along with marked changes in gene expression post-administration suggesting intracellular pharmacodynamic activity. Together, these results demonstrate that nomlabofusp enters the cell and localizes to the mitochondria, releasing mature frataxin that appears to be biologically active and support the use of nomlabofusp as a potential treatment for patients with Friedreich's ataxia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信