Knowledge Graph-Based Few-Shot Learning for Label of Medical Imaging Reports.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Tiancheng Li, Yuxuan Zhang, Deyu Su, Ming Liu, Mingxin Ge, Linyu Chen, Chuanfu Li, Jin Tang
{"title":"Knowledge Graph-Based Few-Shot Learning for Label of Medical Imaging Reports.","authors":"Tiancheng Li, Yuxuan Zhang, Deyu Su, Ming Liu, Mingxin Ge, Linyu Chen, Chuanfu Li, Jin Tang","doi":"10.1016/j.acra.2025.02.045","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The application of artificial intelligence (AI) in the field of automatic imaging report labeling faces the challenge of manually labeling large datasets.</p><p><strong>Purpose: </strong>To propose a data augmentation method by using knowledge graph (KG) and few-shot learning.</p><p><strong>Methods: </strong>A KG of lumbar spine X-ray images was constructed, and 2000 data were annotated based on the KG, which were divided into training, validation, and test sets in a ratio of 7:2:1. The training dataset was augmented based on the synonym/replacement attributes of the KG and was the augmented data was input into the BERT (Bidirectional Encoder Representations from Transformers) model for automatic annotation training. The performance of the model under different augmentation ratios (1:10, 1:100, 1:1000) and augmentation methods (synonyms only, replacements only, combination of synonyms and replacements) was evaluated using the precision and F1 scores. In addition, with the augmentation ratio was fixed, iterative experiments were performed by supplementing the data of nodes that perform poorly in the validation set to further improve model's performance.</p><p><strong>Results: </strong>Prior to data augmentation, the precision was 0.728 and the F1 score was 0.666. By adjusting the augmentation ratio, the precision increased from 0.912 at a 1:10 augmentation ratio to 0.932 at a 1:100 augmentation ratio (P<.05), while F1 score improved from 0.853 at a 1:10 augmentation ratio to 0.881 at a 1:100 augmentation ratio (P<.05). Additionally, the effectiveness of various augmentation methods was compared at a 1:100 augmentation ratio. The augmentation method that combined synonyms and replacements (F1=0.881) was superior to the methods that only used synonyms (F1=0.815) and only used replacements (F1=0.753) (P<.05). For nodes that exhibited suboptimal performance on the validation set, supplementing the training set with target data improved model performance, increasing the average F1 score to 0.979 (P<.05).</p><p><strong>Conclusion: </strong>Based on the KG, this study trained an automatic labeling model of radiology reports using a few-shot data set. This method effectively reduces the workload of manual labeling, improves the efficiency and accuracy of image data labeling, and provides an important research strategy for the application of AI in the domain of automatic labeling of image reports.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.02.045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The application of artificial intelligence (AI) in the field of automatic imaging report labeling faces the challenge of manually labeling large datasets.

Purpose: To propose a data augmentation method by using knowledge graph (KG) and few-shot learning.

Methods: A KG of lumbar spine X-ray images was constructed, and 2000 data were annotated based on the KG, which were divided into training, validation, and test sets in a ratio of 7:2:1. The training dataset was augmented based on the synonym/replacement attributes of the KG and was the augmented data was input into the BERT (Bidirectional Encoder Representations from Transformers) model for automatic annotation training. The performance of the model under different augmentation ratios (1:10, 1:100, 1:1000) and augmentation methods (synonyms only, replacements only, combination of synonyms and replacements) was evaluated using the precision and F1 scores. In addition, with the augmentation ratio was fixed, iterative experiments were performed by supplementing the data of nodes that perform poorly in the validation set to further improve model's performance.

Results: Prior to data augmentation, the precision was 0.728 and the F1 score was 0.666. By adjusting the augmentation ratio, the precision increased from 0.912 at a 1:10 augmentation ratio to 0.932 at a 1:100 augmentation ratio (P<.05), while F1 score improved from 0.853 at a 1:10 augmentation ratio to 0.881 at a 1:100 augmentation ratio (P<.05). Additionally, the effectiveness of various augmentation methods was compared at a 1:100 augmentation ratio. The augmentation method that combined synonyms and replacements (F1=0.881) was superior to the methods that only used synonyms (F1=0.815) and only used replacements (F1=0.753) (P<.05). For nodes that exhibited suboptimal performance on the validation set, supplementing the training set with target data improved model performance, increasing the average F1 score to 0.979 (P<.05).

Conclusion: Based on the KG, this study trained an automatic labeling model of radiology reports using a few-shot data set. This method effectively reduces the workload of manual labeling, improves the efficiency and accuracy of image data labeling, and provides an important research strategy for the application of AI in the domain of automatic labeling of image reports.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信