{"title":"Hepatic microtubule destabilization facilitates liver fibrosis in the mouse model of Wilson disease.","authors":"Som Dev, Yixuan Dong, James P Hamilton","doi":"10.1007/s00109-025-02535-y","DOIUrl":null,"url":null,"abstract":"<p><p>Wilson disease (WD) is a potentially fatal metabolic disorder caused by the inactivation of the copper (Cu) transporter ATP7B, resulting in systemic Cu overload and fibroinflammatory liver disease. The molecular mechanism and effects of elevated Cu on cytoskeletal dynamics in liver fibrogenesis are not clear. Here, we tested the regulation of hepatic cytoskeleton and fibrogenesis with respect to Cu overload in WD. Atp7b<sup>-/-</sup> (knockout) mice with established liver disease, hepatocyte-specific Atp7b△<sup>Hep</sup> knockout mice without fibroinflammatory disease, and the age-and sex-matched controls were compared using Western blotting, real-time quantitative reverse transcription PCR (qRT-PCR), immunohistochemical (IHC) staining and transcriptomics (RNA-sequencing) analysis. In Atp7b<sup>-/-</sup> mice with developed liver disease, there is a significant increase in cytoskeletal protein expression with a reduction in α-tubulin acetylation. In these mice before the onset of liver pathology, no significant changes in cytoskeletal nor hepatic stellate cell activation are observed. As hepatic copper levels rise, an increase in cytoskeletal proteins with a decrease in acetylated-α-tubulin/α-tubulin ratio occurs. RNA-sequencing, qRT-PCR, and immunostaining confirm that the tubulin is upregulated at the transcriptional level and hepatocytes are the primary source of early tubulin increases before fibrosis. An increase in α-tubulin with a decrease in α-tubulin acetylation via Hdac6 and Sirt2 induction facilitates fibrosis as reflected by concomitant increases in desmin and α-SMA immunostaining in Atp7b<sup>-/-</sup> mice at 20 weeks. Moreover, strongly positive correlations between α-tubulin and α-tubulin deacetylase with the expression of liver fibrosis markers are observed in animal and human WD. Hepatocyte-specific Atp7b△<sup>Hep</sup> mice lack significant changes in tubulin as well as fibrosis despite hepatic steatosis. This study provides evidence that microtubule destabilization causes cytoskeletal rearrangement and facilitates hepatic stellate cell (HSC) activation and fibrosis in the murine model of WD. KEY MESSAGES: Hepatic cytoskeleton system is induced in Wilson disease. Hepatic microtubules acetylation is dysregulated in murine Wilson disease. Microtubules destabilization is positively associated with liver fibrosis in Wilson disease. Microtubules destabilization concomitant with fibrogenesis exacerbates WD progression.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02535-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Wilson disease (WD) is a potentially fatal metabolic disorder caused by the inactivation of the copper (Cu) transporter ATP7B, resulting in systemic Cu overload and fibroinflammatory liver disease. The molecular mechanism and effects of elevated Cu on cytoskeletal dynamics in liver fibrogenesis are not clear. Here, we tested the regulation of hepatic cytoskeleton and fibrogenesis with respect to Cu overload in WD. Atp7b-/- (knockout) mice with established liver disease, hepatocyte-specific Atp7b△Hep knockout mice without fibroinflammatory disease, and the age-and sex-matched controls were compared using Western blotting, real-time quantitative reverse transcription PCR (qRT-PCR), immunohistochemical (IHC) staining and transcriptomics (RNA-sequencing) analysis. In Atp7b-/- mice with developed liver disease, there is a significant increase in cytoskeletal protein expression with a reduction in α-tubulin acetylation. In these mice before the onset of liver pathology, no significant changes in cytoskeletal nor hepatic stellate cell activation are observed. As hepatic copper levels rise, an increase in cytoskeletal proteins with a decrease in acetylated-α-tubulin/α-tubulin ratio occurs. RNA-sequencing, qRT-PCR, and immunostaining confirm that the tubulin is upregulated at the transcriptional level and hepatocytes are the primary source of early tubulin increases before fibrosis. An increase in α-tubulin with a decrease in α-tubulin acetylation via Hdac6 and Sirt2 induction facilitates fibrosis as reflected by concomitant increases in desmin and α-SMA immunostaining in Atp7b-/- mice at 20 weeks. Moreover, strongly positive correlations between α-tubulin and α-tubulin deacetylase with the expression of liver fibrosis markers are observed in animal and human WD. Hepatocyte-specific Atp7b△Hep mice lack significant changes in tubulin as well as fibrosis despite hepatic steatosis. This study provides evidence that microtubule destabilization causes cytoskeletal rearrangement and facilitates hepatic stellate cell (HSC) activation and fibrosis in the murine model of WD. KEY MESSAGES: Hepatic cytoskeleton system is induced in Wilson disease. Hepatic microtubules acetylation is dysregulated in murine Wilson disease. Microtubules destabilization is positively associated with liver fibrosis in Wilson disease. Microtubules destabilization concomitant with fibrogenesis exacerbates WD progression.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.