{"title":"PlantRing: A high-throughput wearable sensor system for decoding plant growth, water relations, and innovating irrigation.","authors":"Ting Sun, Chenze Lu, Zheng Shi, Mei Zou, Peng Bi, Xiaodong Xu, Qiguang Xie, Rujia Jiang, Yunxiu Liu, Rui Cheng, Wenzhao Xu, Huasen Wang, Yingying Zhang, Pei Xu","doi":"10.1016/j.xplc.2025.101322","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of flexible electronics with plant science has generated various plant-wearable sensors, yet challenges persist in their application to real-world agriculture, particularly in high-throughput settings. Overcoming the trade-off between sensing sensitivity and range, adapting sensors to a wide range of crop types, and bridging the gap between sensor measurements and biological understandings remain primary obstacles. Here, we introduce PlantRing, an innovative, nano-flexible sensing system designed to address these challenges. PlantRing employs bio-sourced carbonized silk georgette as the strain-sensing material, offering an exceptional detection limit (0.03%-0.17% strain, depending on sensor model), high stretchability (tensile strain up to 100%), and remarkable durability (season-long use). PlantRing effectively monitors plant growth and water status by measuring organ circumference dynamics, performing reliably under harsh conditions, and adapting to a wide range of plant species. Applying PlantRing to study fruit cracking in tomato and watermelon has revealed a novel hydraulic mechanism characterized by genotype-specific excess sap flow within the plant to fruiting branches. Its high-throughput application has enabled large-scale quantification of stomatal sensitivity to soil drought-a long-standing aspiration in plant biology-facilitating the selection of drought-tolerant germplasm. Combining PlantRing with a soybean mutant has led to the discovery of a potential novel function of the circadian clock gene GmLNK2 in stomatal regulation. More practically, integrating PlantRing into feedback irrigation achieves simultaneous water conservation and quality improvement, signifying a paradigm shift from reliance on experience or environmental cues to plant-based feedback control. Collectively, PlantRing represents a groundbreaking tool poised to revolutionize botanical studies, agriculture, and forestry.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101322"},"PeriodicalIF":11.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101322","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of flexible electronics with plant science has generated various plant-wearable sensors, yet challenges persist in their application to real-world agriculture, particularly in high-throughput settings. Overcoming the trade-off between sensing sensitivity and range, adapting sensors to a wide range of crop types, and bridging the gap between sensor measurements and biological understandings remain primary obstacles. Here, we introduce PlantRing, an innovative, nano-flexible sensing system designed to address these challenges. PlantRing employs bio-sourced carbonized silk georgette as the strain-sensing material, offering an exceptional detection limit (0.03%-0.17% strain, depending on sensor model), high stretchability (tensile strain up to 100%), and remarkable durability (season-long use). PlantRing effectively monitors plant growth and water status by measuring organ circumference dynamics, performing reliably under harsh conditions, and adapting to a wide range of plant species. Applying PlantRing to study fruit cracking in tomato and watermelon has revealed a novel hydraulic mechanism characterized by genotype-specific excess sap flow within the plant to fruiting branches. Its high-throughput application has enabled large-scale quantification of stomatal sensitivity to soil drought-a long-standing aspiration in plant biology-facilitating the selection of drought-tolerant germplasm. Combining PlantRing with a soybean mutant has led to the discovery of a potential novel function of the circadian clock gene GmLNK2 in stomatal regulation. More practically, integrating PlantRing into feedback irrigation achieves simultaneous water conservation and quality improvement, signifying a paradigm shift from reliance on experience or environmental cues to plant-based feedback control. Collectively, PlantRing represents a groundbreaking tool poised to revolutionize botanical studies, agriculture, and forestry.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.