{"title":"Recent advances of CAR-T cells in acute myeloid leukemia.","authors":"Huan Deng, Qi Wang, Xiaodong Tong, Zhiwei Cui, Yang Yang, Ying Xiang","doi":"10.1177/20406207251326802","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML), the most common type of leukemia in adults, is a highly heterogeneous and aggressive hematologic malignancy. Since the 20th century, the combination of cytosine arabinoside and anthracyclines has been the most common chemotherapy drug used to treat patients with AML. Although, new targeted medicines have emerged, such as midostaurin and gilteritinib targeting FMS-like tyrosine kinase 3 (FLT3), ivosidenib (isocitrate dehydrogenase 1 (IDH1) inhibitor) and enasidenib (IDH2 inhibitor) targeting IDH, and gemtuzumab ozogamicin targeting CD33, which have changed the treatment strategies of AML. But, until now, hematopoietic stem cell transplantation remains the best treatment option in most cases. However, treatment resistance and relapse are still the major consequences of disease progression in AML, highlighting the urgent need for novel therapeutic approaches. As an alternative, chimeric antigen receptor (CAR)-T cells are engineered T-cells developed as a breakthrough in cancer therapy in recent years, and explored and used in various tumor types. In particular, it has achieved remarkable efficacy in the field of relapsed and refractory B lymphocyte tumors. This review mainly summarizes and discusses the research progress and the clinical application of CAR-T cell immunotherapy in AML in recent years.</p>","PeriodicalId":23048,"journal":{"name":"Therapeutic Advances in Hematology","volume":"16 ","pages":"20406207251326802"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20406207251326802","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML), the most common type of leukemia in adults, is a highly heterogeneous and aggressive hematologic malignancy. Since the 20th century, the combination of cytosine arabinoside and anthracyclines has been the most common chemotherapy drug used to treat patients with AML. Although, new targeted medicines have emerged, such as midostaurin and gilteritinib targeting FMS-like tyrosine kinase 3 (FLT3), ivosidenib (isocitrate dehydrogenase 1 (IDH1) inhibitor) and enasidenib (IDH2 inhibitor) targeting IDH, and gemtuzumab ozogamicin targeting CD33, which have changed the treatment strategies of AML. But, until now, hematopoietic stem cell transplantation remains the best treatment option in most cases. However, treatment resistance and relapse are still the major consequences of disease progression in AML, highlighting the urgent need for novel therapeutic approaches. As an alternative, chimeric antigen receptor (CAR)-T cells are engineered T-cells developed as a breakthrough in cancer therapy in recent years, and explored and used in various tumor types. In particular, it has achieved remarkable efficacy in the field of relapsed and refractory B lymphocyte tumors. This review mainly summarizes and discusses the research progress and the clinical application of CAR-T cell immunotherapy in AML in recent years.
期刊介绍:
Therapeutic Advances in Hematology delivers the highest quality peer-reviewed articles, reviews, and scholarly comment on pioneering efforts and innovative studies across all areas of hematology. The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in hematology, providing a forum in print and online for publishing the highest quality articles in this area.