Polylactic-Co-Glycolic Acid/Alginate/Neem Oil-Reduced Graphene Oxide as a pH-Sensitive Nanocarrier for Hesperidin Drug Delivery: Antimicrobial and Acute Otitis Media Assessments.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-03-07 DOI:10.3390/ph18030381
Saeed Abdul Kareem Saeed Al-Zuhairy, Sammar Fathy Elhabal, Mohamed Fathi Mohamed Elrefai, Sandra Hababeh, Jakline Nelson, Marwa Fady, Nahla A Elzohairy, Tassneim M Ewedah, Ibrahim S Mousa, Ahmed Mohsen Elsaid Hamdan
{"title":"Polylactic-Co-Glycolic Acid/Alginate/Neem Oil-Reduced Graphene Oxide as a pH-Sensitive Nanocarrier for Hesperidin Drug Delivery: Antimicrobial and Acute Otitis Media Assessments.","authors":"Saeed Abdul Kareem Saeed Al-Zuhairy, Sammar Fathy Elhabal, Mohamed Fathi Mohamed Elrefai, Sandra Hababeh, Jakline Nelson, Marwa Fady, Nahla A Elzohairy, Tassneim M Ewedah, Ibrahim S Mousa, Ahmed Mohsen Elsaid Hamdan","doi":"10.3390/ph18030381","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Hesperidin (HSP) is a potent phytochemical antioxidant and anti-inflammatory agent that protects against otitis media. However, due to its low solubility and bioavailability, a suitable delivery method is needed to overcome these problems. A hydrogel is a promising nanocarrier for controlled drug delivery in response to external stimuli, such as pH variations. <b>Methods</b>: Graphene oxide (GO)-based nanocarriers that encapsulate hesperidin (HSP) were further coated with a polylactic-co-glycolic acid/alginate (PLGA-Alg) hydrogel before being integrated into a green neem oil (N.O.) double emulsion to produce a synergistic effect and then characterized by different assays. <b>Results</b>: The nanocarriers exhibited a substantial particle size (168 ± 0.32 nm), with high encapsulation (89.86 ± 0.23%) and a zeta potential of 37 ± 0.43 mV. In vitro release studies conducted over 96 h indicated a sustained HSP release of 82% at pH 5.4 and 65% at pH 7.4. The GO-HSP-loaded neem oil double emulsion formulation exhibits substantial antibacterial activity, as evidenced by inhibition zones of 39 ± 0.02 mm against <i>Staphylococcus epidermidis</i>, and considerable antifungal activity against <i>Candida albicans</i>, with an inhibition zone of 43 ± 0.13 mm, along with biofilm inhibition activity. The formulation demonstrated antioxidant activity (5.21 µg/mL) and increased cell viability (90-95%) while maintaining low cytotoxicity in HSE-2 cells. A histopathological analysis confirmed that treatment with the nanocarriers reduced the levels of pro-inflammatory cytokines (IL-1β, TNF-α, TLR4, IL-6) and raised the levels of antioxidant markers (Nrf-2, SOD) in an in vivo rat model of otitis media. <b>Conclusions</b>: GO-based nanocarriers integrated into a neem oil double emulsion and coated with PLGA-Alg hydrogel deliver hesperidin with sustained release and enhanced antibacterial, antifungal, and antioxidant properties. This formulation may be used to treat otitis media and other oxidative stress diseases.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18030381","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Hesperidin (HSP) is a potent phytochemical antioxidant and anti-inflammatory agent that protects against otitis media. However, due to its low solubility and bioavailability, a suitable delivery method is needed to overcome these problems. A hydrogel is a promising nanocarrier for controlled drug delivery in response to external stimuli, such as pH variations. Methods: Graphene oxide (GO)-based nanocarriers that encapsulate hesperidin (HSP) were further coated with a polylactic-co-glycolic acid/alginate (PLGA-Alg) hydrogel before being integrated into a green neem oil (N.O.) double emulsion to produce a synergistic effect and then characterized by different assays. Results: The nanocarriers exhibited a substantial particle size (168 ± 0.32 nm), with high encapsulation (89.86 ± 0.23%) and a zeta potential of 37 ± 0.43 mV. In vitro release studies conducted over 96 h indicated a sustained HSP release of 82% at pH 5.4 and 65% at pH 7.4. The GO-HSP-loaded neem oil double emulsion formulation exhibits substantial antibacterial activity, as evidenced by inhibition zones of 39 ± 0.02 mm against Staphylococcus epidermidis, and considerable antifungal activity against Candida albicans, with an inhibition zone of 43 ± 0.13 mm, along with biofilm inhibition activity. The formulation demonstrated antioxidant activity (5.21 µg/mL) and increased cell viability (90-95%) while maintaining low cytotoxicity in HSE-2 cells. A histopathological analysis confirmed that treatment with the nanocarriers reduced the levels of pro-inflammatory cytokines (IL-1β, TNF-α, TLR4, IL-6) and raised the levels of antioxidant markers (Nrf-2, SOD) in an in vivo rat model of otitis media. Conclusions: GO-based nanocarriers integrated into a neem oil double emulsion and coated with PLGA-Alg hydrogel deliver hesperidin with sustained release and enhanced antibacterial, antifungal, and antioxidant properties. This formulation may be used to treat otitis media and other oxidative stress diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信