Physiologically Based Pharmacokinetic Modeling of Tofacitinib: Predicting Drug Exposure and Optimizing Dosage in Special Populations and Drug-Drug Interaction Scenarios.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-03-18 DOI:10.3390/ph18030425
Zhihai Cao, Zilong Wang, Qian Zhang, Wei Zhang, Liang Zheng, Wei Hu
{"title":"Physiologically Based Pharmacokinetic Modeling of Tofacitinib: Predicting Drug Exposure and Optimizing Dosage in Special Populations and Drug-Drug Interaction Scenarios.","authors":"Zhihai Cao, Zilong Wang, Qian Zhang, Wei Zhang, Liang Zheng, Wei Hu","doi":"10.3390/ph18030425","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Tofacitinib is mainly used in the adult population for immune-mediated inflammatory diseases. There is little information available on the pharmacokinetics of tofacitinib in pediatric patients, populations with hepatic impairment and renal impairment, and patients with drug-drug interactions (DDIs). This study aimed to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of tofacitinib in the populations mentioned above. <b>Methods:</b> We developed the PBPK models in PK-Sim<sup>®</sup> and evaluated the models with observed clinical PK data. The Monte Carlo algorithm was used for parameter identification. <b>Results:</b> The adult PBPK model accurately simulated the pharmacokinetic profiles of all administration scenarios. The geometric mean fold errors for the predicted/observed maximum concentration and area under the curve are 1.17 and 1.16, respectively. The extrapolated models accurately simulated the pharmacokinetic characteristics of tofacitinib. The pediatric patients aged 12-to-<18 years and 2-to-<6 years need to adjust the dose to 4 mg BID and 1.7 mg BID, respectively, to achieve comparable steady-state exposures to 5 mg BID in adults. The populations with moderate hepatic impairment and severe renal impairment need to reduce the dose to 50% and 75% of the original dose, respectively. Tofacitinib should be reduced to 50% and 65% of the original dose for concomitant use with fluconazole and ketoconazole, respectively, and increased to 150% of the original dose for concomitant use with rifampicin. <b>Conclusions:</b> We developed a tofacitinib PBPK model and extrapolated it to special populations and DDIs. The predictive results of the models can help the rational use of tofacitinib in these populations.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18030425","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tofacitinib is mainly used in the adult population for immune-mediated inflammatory diseases. There is little information available on the pharmacokinetics of tofacitinib in pediatric patients, populations with hepatic impairment and renal impairment, and patients with drug-drug interactions (DDIs). This study aimed to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of tofacitinib in the populations mentioned above. Methods: We developed the PBPK models in PK-Sim® and evaluated the models with observed clinical PK data. The Monte Carlo algorithm was used for parameter identification. Results: The adult PBPK model accurately simulated the pharmacokinetic profiles of all administration scenarios. The geometric mean fold errors for the predicted/observed maximum concentration and area under the curve are 1.17 and 1.16, respectively. The extrapolated models accurately simulated the pharmacokinetic characteristics of tofacitinib. The pediatric patients aged 12-to-<18 years and 2-to-<6 years need to adjust the dose to 4 mg BID and 1.7 mg BID, respectively, to achieve comparable steady-state exposures to 5 mg BID in adults. The populations with moderate hepatic impairment and severe renal impairment need to reduce the dose to 50% and 75% of the original dose, respectively. Tofacitinib should be reduced to 50% and 65% of the original dose for concomitant use with fluconazole and ketoconazole, respectively, and increased to 150% of the original dose for concomitant use with rifampicin. Conclusions: We developed a tofacitinib PBPK model and extrapolated it to special populations and DDIs. The predictive results of the models can help the rational use of tofacitinib in these populations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信