Rhoifolin Improves Glycometabolic Control in Streptozotocin-Induced Diabetic Rats by Up-Regulating the Expression of Insulin Signaling Proteins and Down-Regulating the MAPK/JNK Pathway.
{"title":"<i>Rhoifolin</i> Improves Glycometabolic Control in Streptozotocin-Induced Diabetic Rats by Up-Regulating the Expression of Insulin Signaling Proteins and Down-Regulating the MAPK/JNK Pathway.","authors":"Maryam Ehsan, Sibtain Ahmed, Wafa Majeed, Asra Iftikhar, Maryam Iftikhar, Mateen Abbas, Tahir Mehmood","doi":"10.3390/ph18030361","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and Aim:</b><i>Rhoifolin</i> is a bioactive flavonoid that possesses strong antioxidant and anti-inflammatory activities. The current investigation aimed to examine the anti-diabetic potential of <i>rhoifolin</i> in streptozotocin-induced diabetic rats. Dose-dependent (10 and 20 mg/kg) anti-hyperglycemic, anti-hyperlipidemic, anti-inflammatory, and antioxidant effects of <i>rhoifolin</i> were evaluated by measuring fasting blood glucose, serum glucose, serum insulin, HOMA-IR, lipidemic status, inflammatory cytokines, and hepatic antioxidant markers. To identify the underlying mechanism behind the anti-diabetic activity of <i>rhoifolin</i>, qRT-PCR was carried out using rat pancreatic and hepatic tissues. <b>Results:</b> The results have shown that <i>rhoifolin</i> produced antioxidant effects, as exhibited by DPPH and ABTS<sup>+</sup> assays, respectively. <i>Rhoifolin</i> showed potent alpha-amylase and alpha-glucosidase inhibitory activities. <i>Rhoifolin</i> enhanced the serum insulin level, significantly decreased the serum glucose, HOMA-IR, and cytokine levels, and improved the lipid profile. <i>Rhoifolin</i> also showed a substantial decline in insulin resistance in the treated rats. <i>Rhoifolin</i> significantly raised catalase and superoxide dismutase levels in hepatic tissues while potentially decreasing the malondialdehyde levels. Moreover, <i>rhoifolin</i> significantly down-regulated the MAPK-8, TRAF-6, and TRAF-4 expressions and up-regulated the PDX-1, SIRT-1, INS-1, and GLUT-4 expressions in treated groups. <b>Conclusions:</b> Our results indicate that <i>rhoifolin</i> exhibits a hypoglycemic effect, which appears to be associated with its regulatory impact on metabolic inflammation and oxidative stress markers. This was accompanied by a lower HOMA-IR index, highlighting its potential role in promoting glucose homeostasis and mitigating insulin resistance. According to preliminary results, <i>rhoifolin</i> could further be tested to introduce it as another viable treatment option for diabetes.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18030361","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Aim:Rhoifolin is a bioactive flavonoid that possesses strong antioxidant and anti-inflammatory activities. The current investigation aimed to examine the anti-diabetic potential of rhoifolin in streptozotocin-induced diabetic rats. Dose-dependent (10 and 20 mg/kg) anti-hyperglycemic, anti-hyperlipidemic, anti-inflammatory, and antioxidant effects of rhoifolin were evaluated by measuring fasting blood glucose, serum glucose, serum insulin, HOMA-IR, lipidemic status, inflammatory cytokines, and hepatic antioxidant markers. To identify the underlying mechanism behind the anti-diabetic activity of rhoifolin, qRT-PCR was carried out using rat pancreatic and hepatic tissues. Results: The results have shown that rhoifolin produced antioxidant effects, as exhibited by DPPH and ABTS+ assays, respectively. Rhoifolin showed potent alpha-amylase and alpha-glucosidase inhibitory activities. Rhoifolin enhanced the serum insulin level, significantly decreased the serum glucose, HOMA-IR, and cytokine levels, and improved the lipid profile. Rhoifolin also showed a substantial decline in insulin resistance in the treated rats. Rhoifolin significantly raised catalase and superoxide dismutase levels in hepatic tissues while potentially decreasing the malondialdehyde levels. Moreover, rhoifolin significantly down-regulated the MAPK-8, TRAF-6, and TRAF-4 expressions and up-regulated the PDX-1, SIRT-1, INS-1, and GLUT-4 expressions in treated groups. Conclusions: Our results indicate that rhoifolin exhibits a hypoglycemic effect, which appears to be associated with its regulatory impact on metabolic inflammation and oxidative stress markers. This was accompanied by a lower HOMA-IR index, highlighting its potential role in promoting glucose homeostasis and mitigating insulin resistance. According to preliminary results, rhoifolin could further be tested to introduce it as another viable treatment option for diabetes.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.