Huafengdan Inhibits Glioblastoma Cell Growth and Mobility by Acting on PLAU and CAV1 Targets.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-03-18 DOI:10.3390/ph18030428
Dengxiao Lin, Wenfeng Yu, Jia Yu, Sha Cheng, Yu Song, Xiaoqing Wan, Yingjiang Xu, Heng Luo, Baofei Sun
{"title":"Huafengdan Inhibits Glioblastoma Cell Growth and Mobility by Acting on PLAU and CAV1 Targets.","authors":"Dengxiao Lin, Wenfeng Yu, Jia Yu, Sha Cheng, Yu Song, Xiaoqing Wan, Yingjiang Xu, Heng Luo, Baofei Sun","doi":"10.3390/ph18030428","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Glioblastoma (GBM) is considered a clinically refractory malignant tumor due to its high recurrence and malignancy, invasiveness, and poor prognosis. The ethnomedicine Huafengdan (HFD) is prepared using several Chinese herbs by a complex fermentation process that has a long history. Previous studies have reported the inhibitory effect of HFD on GBM both in vitro and in vivo; however, its mechanism of action is unclear. <b>Methods</b>: The inhibitory effects of HFD on the growth, migration, and invasion of GBM cells were determined using the MTT assay, EdU assay, Transwell assay, flow cytometry, and Western blotting. A subcutaneous graft tumor model of nude BALB/c mice was established using U87 cells, and the in vivo activity and toxicity of HFD were evaluated using immunohistochemical staining and hematoxylin and eosin staining. Network pharmacology, bioinformatics, and transcriptomics were used to screen the targets and related signaling pathways of HFD in GBM and were validated using qPCR, CETSA, and Western blotting. <b>Results</b>: HFD inhibited the proliferation, invasion, and migration of GBM cells and induced S-phase block and apoptosis in GBM cells. It inhibited the in vivo growth of GBM cells without obvious toxicity. Mechanistic studies showed that the inhibition of GBM cell growth, migration, and invasion by HFD involved the key targets PLAU and CAV1. Its associated signaling pathways were the PI3K/Akt signaling pathway and cell cycle signaling pathway. <b>Conclusions</b>: Our findings confirm the novel function of HFD in inhibiting GBM cell growth in vitro and in vivo and highlight its potential in treating GBM.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18030428","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma (GBM) is considered a clinically refractory malignant tumor due to its high recurrence and malignancy, invasiveness, and poor prognosis. The ethnomedicine Huafengdan (HFD) is prepared using several Chinese herbs by a complex fermentation process that has a long history. Previous studies have reported the inhibitory effect of HFD on GBM both in vitro and in vivo; however, its mechanism of action is unclear. Methods: The inhibitory effects of HFD on the growth, migration, and invasion of GBM cells were determined using the MTT assay, EdU assay, Transwell assay, flow cytometry, and Western blotting. A subcutaneous graft tumor model of nude BALB/c mice was established using U87 cells, and the in vivo activity and toxicity of HFD were evaluated using immunohistochemical staining and hematoxylin and eosin staining. Network pharmacology, bioinformatics, and transcriptomics were used to screen the targets and related signaling pathways of HFD in GBM and were validated using qPCR, CETSA, and Western blotting. Results: HFD inhibited the proliferation, invasion, and migration of GBM cells and induced S-phase block and apoptosis in GBM cells. It inhibited the in vivo growth of GBM cells without obvious toxicity. Mechanistic studies showed that the inhibition of GBM cell growth, migration, and invasion by HFD involved the key targets PLAU and CAV1. Its associated signaling pathways were the PI3K/Akt signaling pathway and cell cycle signaling pathway. Conclusions: Our findings confirm the novel function of HFD in inhibiting GBM cell growth in vitro and in vivo and highlight its potential in treating GBM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信