{"title":"Huafengdan Inhibits Glioblastoma Cell Growth and Mobility by Acting on PLAU and CAV1 Targets.","authors":"Dengxiao Lin, Wenfeng Yu, Jia Yu, Sha Cheng, Yu Song, Xiaoqing Wan, Yingjiang Xu, Heng Luo, Baofei Sun","doi":"10.3390/ph18030428","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Glioblastoma (GBM) is considered a clinically refractory malignant tumor due to its high recurrence and malignancy, invasiveness, and poor prognosis. The ethnomedicine Huafengdan (HFD) is prepared using several Chinese herbs by a complex fermentation process that has a long history. Previous studies have reported the inhibitory effect of HFD on GBM both in vitro and in vivo; however, its mechanism of action is unclear. <b>Methods</b>: The inhibitory effects of HFD on the growth, migration, and invasion of GBM cells were determined using the MTT assay, EdU assay, Transwell assay, flow cytometry, and Western blotting. A subcutaneous graft tumor model of nude BALB/c mice was established using U87 cells, and the in vivo activity and toxicity of HFD were evaluated using immunohistochemical staining and hematoxylin and eosin staining. Network pharmacology, bioinformatics, and transcriptomics were used to screen the targets and related signaling pathways of HFD in GBM and were validated using qPCR, CETSA, and Western blotting. <b>Results</b>: HFD inhibited the proliferation, invasion, and migration of GBM cells and induced S-phase block and apoptosis in GBM cells. It inhibited the in vivo growth of GBM cells without obvious toxicity. Mechanistic studies showed that the inhibition of GBM cell growth, migration, and invasion by HFD involved the key targets PLAU and CAV1. Its associated signaling pathways were the PI3K/Akt signaling pathway and cell cycle signaling pathway. <b>Conclusions</b>: Our findings confirm the novel function of HFD in inhibiting GBM cell growth in vitro and in vivo and highlight its potential in treating GBM.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18030428","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glioblastoma (GBM) is considered a clinically refractory malignant tumor due to its high recurrence and malignancy, invasiveness, and poor prognosis. The ethnomedicine Huafengdan (HFD) is prepared using several Chinese herbs by a complex fermentation process that has a long history. Previous studies have reported the inhibitory effect of HFD on GBM both in vitro and in vivo; however, its mechanism of action is unclear. Methods: The inhibitory effects of HFD on the growth, migration, and invasion of GBM cells were determined using the MTT assay, EdU assay, Transwell assay, flow cytometry, and Western blotting. A subcutaneous graft tumor model of nude BALB/c mice was established using U87 cells, and the in vivo activity and toxicity of HFD were evaluated using immunohistochemical staining and hematoxylin and eosin staining. Network pharmacology, bioinformatics, and transcriptomics were used to screen the targets and related signaling pathways of HFD in GBM and were validated using qPCR, CETSA, and Western blotting. Results: HFD inhibited the proliferation, invasion, and migration of GBM cells and induced S-phase block and apoptosis in GBM cells. It inhibited the in vivo growth of GBM cells without obvious toxicity. Mechanistic studies showed that the inhibition of GBM cell growth, migration, and invasion by HFD involved the key targets PLAU and CAV1. Its associated signaling pathways were the PI3K/Akt signaling pathway and cell cycle signaling pathway. Conclusions: Our findings confirm the novel function of HFD in inhibiting GBM cell growth in vitro and in vivo and highlight its potential in treating GBM.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.