{"title":"AMPA Receptor Modulation in the Treatment of High-Grade Glioma: Translating Good Science into Better Outcomes.","authors":"Daniel P Radin","doi":"10.3390/ph18030384","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GB) treatment, despite consisting of surgical resection paired with radiation, temozolomide chemotherapy and tumor-treating fields, yields a median survival of 15-20 months. One of the more recently appreciated hallmarks of GB aggressiveness is the co-opting of neurotransmitter signaling mechanisms that normally sustain excitatory synaptic communication in the CNS. AMPA-glutamate receptor (AMPAR) signaling governs the majority of excitatory synaptic activity in the mammalian brain. AMPAR activation in glioma cells activates cellular pathways that enhance proliferation and invasion and confer resistance to approved GB therapeutics. In addition, this review places a specific emphasis on discussing the redefined GB cytoarchitecture that consists of neuron-to-glioma cell synapses, whose oncogenic activity is driven by AMPAR activation on glioma cells, and the discovery of tumor microtubes, which propagate calcium signals throughout the tumor network in order to enhance resistance to complete surgical resection and radiotherapy. These new discoveries notwithstanding, some evidence suggests that AMPAR activation can produce excitotoxicity in tumor cells. This disparity warrants a closer examination at how AMPAR modulation can be leveraged to produce more durable outcomes in the treatment of GB and tumors in peripheral organs that express AMPAR.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18030384","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GB) treatment, despite consisting of surgical resection paired with radiation, temozolomide chemotherapy and tumor-treating fields, yields a median survival of 15-20 months. One of the more recently appreciated hallmarks of GB aggressiveness is the co-opting of neurotransmitter signaling mechanisms that normally sustain excitatory synaptic communication in the CNS. AMPA-glutamate receptor (AMPAR) signaling governs the majority of excitatory synaptic activity in the mammalian brain. AMPAR activation in glioma cells activates cellular pathways that enhance proliferation and invasion and confer resistance to approved GB therapeutics. In addition, this review places a specific emphasis on discussing the redefined GB cytoarchitecture that consists of neuron-to-glioma cell synapses, whose oncogenic activity is driven by AMPAR activation on glioma cells, and the discovery of tumor microtubes, which propagate calcium signals throughout the tumor network in order to enhance resistance to complete surgical resection and radiotherapy. These new discoveries notwithstanding, some evidence suggests that AMPAR activation can produce excitotoxicity in tumor cells. This disparity warrants a closer examination at how AMPAR modulation can be leveraged to produce more durable outcomes in the treatment of GB and tumors in peripheral organs that express AMPAR.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.