Zhongqing Ji, Jiangfeng Zhu, Jinming Liu, Bin Wei, Yixin Shen, Yanan Hu
{"title":"Trends in the application of chondroitinase ABC in injured spinal cord repair.","authors":"Zhongqing Ji, Jiangfeng Zhu, Jinming Liu, Bin Wei, Yixin Shen, Yanan Hu","doi":"10.4103/NRR.NRR-D-24-01354","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injuries have overwhelming physical and occupational implications for patients. Moreover, the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources, adding a substantial burden to the healthcare system and patients' families. In this context, chondroitinase ABC, a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals, has emerged as a promising therapeutic agent. It works by degrading chondroitin sulfate proteoglycans, cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides. Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains. Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting, enhancing the plasticity of perineuronal nets, inhibiting neuronal apoptosis, and modulating immune responses in various animal models. In this review, we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury. We also highlight research advancements in spinal cord injury treatment strategies, with a focus on chondroitinase ABC, and illustrate how improvements in chondroitinase ABC stability, enzymatic activity, and delivery methods have enhanced injured spinal cord repair. Furthermore, we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy. This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC -based spinal cord injury therapies, with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1304-1321"},"PeriodicalIF":5.9000,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01354","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injuries have overwhelming physical and occupational implications for patients. Moreover, the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources, adding a substantial burden to the healthcare system and patients' families. In this context, chondroitinase ABC, a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals, has emerged as a promising therapeutic agent. It works by degrading chondroitin sulfate proteoglycans, cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides. Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains. Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting, enhancing the plasticity of perineuronal nets, inhibiting neuronal apoptosis, and modulating immune responses in various animal models. In this review, we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury. We also highlight research advancements in spinal cord injury treatment strategies, with a focus on chondroitinase ABC, and illustrate how improvements in chondroitinase ABC stability, enzymatic activity, and delivery methods have enhanced injured spinal cord repair. Furthermore, we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy. This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC -based spinal cord injury therapies, with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.