Identifying nexilin as a central gene in neutrophil-driven abdominal aortic aneurysm pathogenesis.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bohan Yang, Yiyan Xu, Fengfei Yan, Cheng Peng, Ye Song, Song Han, Haiyang Wang
{"title":"Identifying nexilin as a central gene in neutrophil-driven abdominal aortic aneurysm pathogenesis.","authors":"Bohan Yang, Yiyan Xu, Fengfei Yan, Cheng Peng, Ye Song, Song Han, Haiyang Wang","doi":"10.1186/s10020-025-01157-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Abdominal aortic aneurysm (AAA) is an inflammation-driven disease in which neutrophil infiltration is critical to its progression. This study aims to explore the molecular mechanisms behind neutrophil infiltration in AAA and identify key regulatory genes.</p><p><strong>Methods: </strong>We utilized weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis to compare AAA and healthy abdominal aortic tissues. Functional enrichment analysis and a protein-protein interaction (PPI) network were constructed to understand gene functions. Machine learning algorithms were applied to identify key hub genes, followed by in vivo validation using an ApoE-/- mouse model.</p><p><strong>Results: </strong>Neutrophils, NK cells, and pDCs were significantly increased in AAA tissues. WGCNA identified 234 genes associated with neutrophil infiltration, of which 39 were significantly differentially expressed. Functional enrichment analysis highlighted roles in actin-related processes and pathways. Nexilin (NEXN) was consistently identified as a key hub gene negatively correlated with immune cell infiltration. In vivo validation confirmed that NEXN inhibits AAA progression in ApoE-/- mice by regulating immune cell infiltration.</p><p><strong>Conclusion: </strong>NEXN plays a crucial role in modulating neutrophil infiltration in AAA. These findings provide new molecular insights into AAA pathogenesis and suggest NEXN as a potential target for AAA therapy.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"120"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01157-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Abdominal aortic aneurysm (AAA) is an inflammation-driven disease in which neutrophil infiltration is critical to its progression. This study aims to explore the molecular mechanisms behind neutrophil infiltration in AAA and identify key regulatory genes.

Methods: We utilized weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis to compare AAA and healthy abdominal aortic tissues. Functional enrichment analysis and a protein-protein interaction (PPI) network were constructed to understand gene functions. Machine learning algorithms were applied to identify key hub genes, followed by in vivo validation using an ApoE-/- mouse model.

Results: Neutrophils, NK cells, and pDCs were significantly increased in AAA tissues. WGCNA identified 234 genes associated with neutrophil infiltration, of which 39 were significantly differentially expressed. Functional enrichment analysis highlighted roles in actin-related processes and pathways. Nexilin (NEXN) was consistently identified as a key hub gene negatively correlated with immune cell infiltration. In vivo validation confirmed that NEXN inhibits AAA progression in ApoE-/- mice by regulating immune cell infiltration.

Conclusion: NEXN plays a crucial role in modulating neutrophil infiltration in AAA. These findings provide new molecular insights into AAA pathogenesis and suggest NEXN as a potential target for AAA therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信