Single-dose intranasal AdC68-vectored vaccines rapidly protect Syrian hamsters against lethal Nipah virus infection.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mingqing Lu, Yanfeng Yao, Hang Liu, Yun Peng, Xuejie Li, Ge Gao, Miaoyu Chen, Xuekai Zhang, Lingjing Mao, Peipei Yang, XiaoYu Zhang, Jing Miao, Zhiming Yuan, Jiaming Lan, Chao Shan
{"title":"Single-dose intranasal AdC68-vectored vaccines rapidly protect Syrian hamsters against lethal Nipah virus infection.","authors":"Mingqing Lu, Yanfeng Yao, Hang Liu, Yun Peng, Xuejie Li, Ge Gao, Miaoyu Chen, Xuekai Zhang, Lingjing Mao, Peipei Yang, XiaoYu Zhang, Jing Miao, Zhiming Yuan, Jiaming Lan, Chao Shan","doi":"10.1016/j.ymthe.2025.03.032","DOIUrl":null,"url":null,"abstract":"<p><p>Nipah virus (NiV) infection is highly lethal in humans, and the development of vaccines that provide rapid protection is critical for addressing NiV outbreaks. In this study, we demonstrate that a single intranasal immunization with the chimpanzee adenoviral-vectored NiV vaccine, AdC68-F, induced robust and sustained cellular and humoral responses in BALB/c mice, and provided complete protection against challenge with the NiV-Malaysia strain (NiV-M) in Syrian hamsters. Notably, AdC68-F, administered at a dose of 5 × 10<sup>9</sup> viral particles, offered a complete prophylactic protection window as few as 7 days before exposure to a lethal NiV-M challenge. Furthermore, passive transfer of sera from AdC68-F or AdC68-G immunized animals conferred complete protection against NiV-M infection in naive hamsters. These findings underscore the pivotal role of antigen-specific immunity in controlling NiV infection and highlight the potential of single-dose intranasal AdC68-based NiV vaccines for rapid protection during outbreaks. By providing rapid and effective protection, these vaccines could help reduce human-to-human transmission and aid in curbing NiV outbreaks.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.03.032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nipah virus (NiV) infection is highly lethal in humans, and the development of vaccines that provide rapid protection is critical for addressing NiV outbreaks. In this study, we demonstrate that a single intranasal immunization with the chimpanzee adenoviral-vectored NiV vaccine, AdC68-F, induced robust and sustained cellular and humoral responses in BALB/c mice, and provided complete protection against challenge with the NiV-Malaysia strain (NiV-M) in Syrian hamsters. Notably, AdC68-F, administered at a dose of 5 × 109 viral particles, offered a complete prophylactic protection window as few as 7 days before exposure to a lethal NiV-M challenge. Furthermore, passive transfer of sera from AdC68-F or AdC68-G immunized animals conferred complete protection against NiV-M infection in naive hamsters. These findings underscore the pivotal role of antigen-specific immunity in controlling NiV infection and highlight the potential of single-dose intranasal AdC68-based NiV vaccines for rapid protection during outbreaks. By providing rapid and effective protection, these vaccines could help reduce human-to-human transmission and aid in curbing NiV outbreaks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信