Brian J Simonds, Kyle A Rogers, Sven Schulze, David Newell, Gordon Shaw, Johannes Wahl, Paul A Williams, John H Lehman
{"title":"Practical realization of the watt from Planck's constant using radiation pressure.","authors":"Brian J Simonds, Kyle A Rogers, Sven Schulze, David Newell, Gordon Shaw, Johannes Wahl, Paul A Williams, John H Lehman","doi":"10.1088/1681-7575/ad844b","DOIUrl":null,"url":null,"abstract":"<p><p>A primary force standard is implemented to realize the watt through Planck's constant by means of radiation pressure at the kilowatt level. The high amplification laser-pressure optic, or HALO, is a multiple reflection radiation pressure apparatus used for absolute radiometry of high-power lasers. In this work, a primary standard electrostatic force balance is used to measure the reflection-enhanced optical forces. With this configuration, the HALO is used to measure laser powers in the range of 100 W-5000 W from a 1070 nm fiber laser. The expanded uncertainty of the 5 kW measurement is 0.12%, which is both the lowest uncertainty multi-kW measurement and radiation pressure-based measurement to-date. The HALO result was validated against a thermal primary standard using a calibrated transfer standard at 2 kW. The degree of equivalence was 0.78% ± 1.12%, which demonstrates agreement within the uncertainties of these two primary standards.</p>","PeriodicalId":18444,"journal":{"name":"Metrologia","volume":"61 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrologia","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1681-7575/ad844b","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
A primary force standard is implemented to realize the watt through Planck's constant by means of radiation pressure at the kilowatt level. The high amplification laser-pressure optic, or HALO, is a multiple reflection radiation pressure apparatus used for absolute radiometry of high-power lasers. In this work, a primary standard electrostatic force balance is used to measure the reflection-enhanced optical forces. With this configuration, the HALO is used to measure laser powers in the range of 100 W-5000 W from a 1070 nm fiber laser. The expanded uncertainty of the 5 kW measurement is 0.12%, which is both the lowest uncertainty multi-kW measurement and radiation pressure-based measurement to-date. The HALO result was validated against a thermal primary standard using a calibrated transfer standard at 2 kW. The degree of equivalence was 0.78% ± 1.12%, which demonstrates agreement within the uncertainties of these two primary standards.
期刊介绍:
Published 6 times per year, Metrologia covers the fundamentals of measurements, particularly those dealing with the seven base units of the International System of Units (metre, kilogram, second, ampere, kelvin, candela, mole) or proposals to replace them.
The journal also publishes papers that contribute to the solution of difficult measurement problems and improve the accuracy of derived units and constants that are of fundamental importance to physics.
In addition to regular papers, the journal publishes review articles, issues devoted to single topics of timely interest and occasional conference proceedings. Letters to the Editor and Short Communications (generally three pages or less) are also considered.