Thermal and Non-Thermal Energies for Atrial Fibrillation Ablation.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Francesco M Brasca, Emanuele Curti, Giovanni B Perego
{"title":"Thermal and Non-Thermal Energies for Atrial Fibrillation Ablation.","authors":"Francesco M Brasca, Emanuele Curti, Giovanni B Perego","doi":"10.3390/jcm14062071","DOIUrl":null,"url":null,"abstract":"<p><p>The cornerstone of ablative therapy for atrial fibrillation (AF) is pulmonary vein isolation (PVI). Whether PVI should be added with additional lesions in persistent atrial fibrillation (PerAF) or for any post-ablative recurrent AF is a matter of debate. Whatever the ablative strategy, it must determine the choice of energy source to achieve the most durable lesion sets with the least likelihood of complications. Radiofrequency (RF) is the most studied thermal ablation technique. It can be combined with high-density electroanatomic mapping and can be used for both pulmonary and extrapulmonary atrial ablation. Cryoenergy is at least as effective as radiofrequency for PVI; it is rapid, relatively safe, and has a steep learning curve. Therefore, it has been proposed as a first-line approach for PVI-only procedures. More recently, a non-thermal technique based on the application of pulsed direct current (Pulsed Field Ablation-PFA) has been introduced. PFA causes cell death by opening cell membrane pores (electroporation) without a significant increase in tissue temperature. It is fast and does not alter the extracellular matrix as thermal techniques do, although it ends up causing long-lasting, transmural lesions. Most importantly, it is relatively selective on cardiac myocytes and therefore potentially safer than thermal techniques. Some PFA systems can be combined with electroanatomic mapping systems. However, as of now, it appears that these ablation technologies should be considered complementary rather than alternative for a number of practical and theoretical reasons.</p>","PeriodicalId":15533,"journal":{"name":"Journal of Clinical Medicine","volume":"14 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcm14062071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

The cornerstone of ablative therapy for atrial fibrillation (AF) is pulmonary vein isolation (PVI). Whether PVI should be added with additional lesions in persistent atrial fibrillation (PerAF) or for any post-ablative recurrent AF is a matter of debate. Whatever the ablative strategy, it must determine the choice of energy source to achieve the most durable lesion sets with the least likelihood of complications. Radiofrequency (RF) is the most studied thermal ablation technique. It can be combined with high-density electroanatomic mapping and can be used for both pulmonary and extrapulmonary atrial ablation. Cryoenergy is at least as effective as radiofrequency for PVI; it is rapid, relatively safe, and has a steep learning curve. Therefore, it has been proposed as a first-line approach for PVI-only procedures. More recently, a non-thermal technique based on the application of pulsed direct current (Pulsed Field Ablation-PFA) has been introduced. PFA causes cell death by opening cell membrane pores (electroporation) without a significant increase in tissue temperature. It is fast and does not alter the extracellular matrix as thermal techniques do, although it ends up causing long-lasting, transmural lesions. Most importantly, it is relatively selective on cardiac myocytes and therefore potentially safer than thermal techniques. Some PFA systems can be combined with electroanatomic mapping systems. However, as of now, it appears that these ablation technologies should be considered complementary rather than alternative for a number of practical and theoretical reasons.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Medicine
Journal of Clinical Medicine MEDICINE, GENERAL & INTERNAL-
CiteScore
5.70
自引率
7.70%
发文量
6468
审稿时长
16.32 days
期刊介绍: Journal of Clinical Medicine (ISSN 2077-0383), is an international scientific open access journal, providing a platform for advances in health care/clinical practices, the study of direct observation of patients and general medical research. This multi-disciplinary journal is aimed at a wide audience of medical researchers and healthcare professionals. Unique features of this journal: manuscripts regarding original research and ideas will be particularly welcomed.JCM also accepts reviews, communications, and short notes. There is no limit to publication length: our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信