Mahmood S Choudhery, Taqdees Arif, Ruhma Mahmood, Asad Mushtaq, Ahmad Niaz, Zaeema Hassan, Hamda Zahid, Pakeeza Nayab, Iqra Arshad, Mehak Arif, Mashaim Majid, David T Harris
{"title":"Induced Mesenchymal Stem Cells: An Emerging Source for Regenerative Medicine Applications.","authors":"Mahmood S Choudhery, Taqdees Arif, Ruhma Mahmood, Asad Mushtaq, Ahmad Niaz, Zaeema Hassan, Hamda Zahid, Pakeeza Nayab, Iqra Arshad, Mehak Arif, Mashaim Majid, David T Harris","doi":"10.3390/jcm14062053","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine is gaining interest in the medical field due to the limitations of conventional treatments, which often fail to address the underlying cause of disease. In recent years, stem cell-based therapies have evolved as a promising alternative approach to treat those diseases that cannot be cured using conventional medicine. Adult stem cells, particularly the mesenchymal stem cells (MSCs), have attracted a lot of attention due to their ability to regenerate and repair human tissues and organs. MSCs isolated from adult tissues are well characterized and are currently the most common type of cells for use in regenerative medicine. However, their low number in adult donor tissues, donor-age and cell-source related heterogeneity, limited proliferative and differentiation potential, and early senescence in in vitro cultures, negatively affect MSC regenerative potential. These factors restrict MSC use for research as well as for clinical applications. To overcome these problems, MSCs with superior regenerative potential are required. Induced MSCs (iMSCs) are obtained from induced pluripotent stem cells (iPSCs). These cells are patient-specific, readily available, and have relatively superior regenerative potential and, therefore, can overcome the problems associated with the use of primary MSCs. In this review, the authors aim to discuss the characteristics, regenerative potential, and limitations of MSCs for regenerative medicine applications. The main methods to generate iMSCs from iPSCs have been discussed in detail. In addition, the proposed criteria for their molecular characterization, applications of iMSCs for disease modeling and drug discovery, as well as potential use in regenerative medicine have been explored in detail.</p>","PeriodicalId":15533,"journal":{"name":"Journal of Clinical Medicine","volume":"14 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcm14062053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Regenerative medicine is gaining interest in the medical field due to the limitations of conventional treatments, which often fail to address the underlying cause of disease. In recent years, stem cell-based therapies have evolved as a promising alternative approach to treat those diseases that cannot be cured using conventional medicine. Adult stem cells, particularly the mesenchymal stem cells (MSCs), have attracted a lot of attention due to their ability to regenerate and repair human tissues and organs. MSCs isolated from adult tissues are well characterized and are currently the most common type of cells for use in regenerative medicine. However, their low number in adult donor tissues, donor-age and cell-source related heterogeneity, limited proliferative and differentiation potential, and early senescence in in vitro cultures, negatively affect MSC regenerative potential. These factors restrict MSC use for research as well as for clinical applications. To overcome these problems, MSCs with superior regenerative potential are required. Induced MSCs (iMSCs) are obtained from induced pluripotent stem cells (iPSCs). These cells are patient-specific, readily available, and have relatively superior regenerative potential and, therefore, can overcome the problems associated with the use of primary MSCs. In this review, the authors aim to discuss the characteristics, regenerative potential, and limitations of MSCs for regenerative medicine applications. The main methods to generate iMSCs from iPSCs have been discussed in detail. In addition, the proposed criteria for their molecular characterization, applications of iMSCs for disease modeling and drug discovery, as well as potential use in regenerative medicine have been explored in detail.
期刊介绍:
Journal of Clinical Medicine (ISSN 2077-0383), is an international scientific open access journal, providing a platform for advances in health care/clinical practices, the study of direct observation of patients and general medical research. This multi-disciplinary journal is aimed at a wide audience of medical researchers and healthcare professionals.
Unique features of this journal:
manuscripts regarding original research and ideas will be particularly welcomed.JCM also accepts reviews, communications, and short notes.
There is no limit to publication length: our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.