A novel deep learning radiopathomics model for predicting carcinogenesis promotor cyclooxygenase-2 expression in common bile duct in children with pancreaticobiliary maljunction: a multicenter study.
IF 4.1 2区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hui-Min Mao, Jian-Jun Zhang, Bin Zhu, Wan-Liang Guo
{"title":"A novel deep learning radiopathomics model for predicting carcinogenesis promotor cyclooxygenase-2 expression in common bile duct in children with pancreaticobiliary maljunction: a multicenter study.","authors":"Hui-Min Mao, Jian-Jun Zhang, Bin Zhu, Wan-Liang Guo","doi":"10.1186/s13244-025-01951-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate a deep learning radiopathomics model (DLRPM) integrating radiological and pathological imaging data to predict biliary cyclooxygenase-2 (COX-2) expression in children with pancreaticobiliary maljunction (PBM), and to compare its performance with single-modality radiomics, deep learning radiomics (DLR), and pathomics models.</p><p><strong>Methods: </strong>This retrospective study included 219 PBM patients, divided into a training set (n = 104; median age, 2.8 years, 75.0% females) and internal test set (n = 71; median age, 2.2 years, 83.1% females) from center I, and an external test set (n = 44; median age, 3.4 years, 65.9% females) from center II. Biliary COX-2 expression was detected using immunohistochemistry. Radiomics, DLR, and pathomics features were extracted from portal venous-phase CT images and H&E-stained histopathological slides, respectively, to build individual single-modality models. These were then integrated to develop the DLRPM, combining three predictive signatures. Model performance was evaluated using AUC, net reclassification index (NRI, for assessing improvement in correct classification) and integrated discrimination improvement (IDI).</p><p><strong>Results: </strong>The DLRPM demonstrated the highest performance, with AUCs of 0.851 (95% CI, 0.759-0.942) in internal test set and 0.841 (95% CI, 0.721-0.960) in external test set. In comparison, AUCs for the radiomics, DLR, and pathomics models were 0.532-0.602, 0.658-0.660, and 0.787-0.805, respectively. The DLRPM significantly outperformed three single-modality models, as demonstrated by the NRI and IDI tests (all p < 0.05).</p><p><strong>Conclusion: </strong>The multimodal DLRPM could accurately and robustly predict COX-2 expression, facilitating risk stratification and personalized postoperative management in PBM. However, prospective multicenter studies with larger cohorts are needed to further validate its generalizability.</p><p><strong>Critical relevance statement: </strong>Our proposed deep learning radiopathomics model, integrating CT and histopathological images, provides a novel and cost-effective approach to accurately predict biliary cyclooxygenase-2 expression, potentially advancing individualized risk stratification and improving long-term outcomes for pediatric patients with pancreaticobiliary maljunction.</p><p><strong>Key points: </strong>Predicting biliary COX-2 expression in pancreaticobiliary maljunction (PBM) is critical but challenging. A deep learning radiopathomics model achieved high predictive accuracy for COX-2. The model supports patient stratification and personalized postoperative management in PBM.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"74"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01951-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To develop and validate a deep learning radiopathomics model (DLRPM) integrating radiological and pathological imaging data to predict biliary cyclooxygenase-2 (COX-2) expression in children with pancreaticobiliary maljunction (PBM), and to compare its performance with single-modality radiomics, deep learning radiomics (DLR), and pathomics models.
Methods: This retrospective study included 219 PBM patients, divided into a training set (n = 104; median age, 2.8 years, 75.0% females) and internal test set (n = 71; median age, 2.2 years, 83.1% females) from center I, and an external test set (n = 44; median age, 3.4 years, 65.9% females) from center II. Biliary COX-2 expression was detected using immunohistochemistry. Radiomics, DLR, and pathomics features were extracted from portal venous-phase CT images and H&E-stained histopathological slides, respectively, to build individual single-modality models. These were then integrated to develop the DLRPM, combining three predictive signatures. Model performance was evaluated using AUC, net reclassification index (NRI, for assessing improvement in correct classification) and integrated discrimination improvement (IDI).
Results: The DLRPM demonstrated the highest performance, with AUCs of 0.851 (95% CI, 0.759-0.942) in internal test set and 0.841 (95% CI, 0.721-0.960) in external test set. In comparison, AUCs for the radiomics, DLR, and pathomics models were 0.532-0.602, 0.658-0.660, and 0.787-0.805, respectively. The DLRPM significantly outperformed three single-modality models, as demonstrated by the NRI and IDI tests (all p < 0.05).
Conclusion: The multimodal DLRPM could accurately and robustly predict COX-2 expression, facilitating risk stratification and personalized postoperative management in PBM. However, prospective multicenter studies with larger cohorts are needed to further validate its generalizability.
Critical relevance statement: Our proposed deep learning radiopathomics model, integrating CT and histopathological images, provides a novel and cost-effective approach to accurately predict biliary cyclooxygenase-2 expression, potentially advancing individualized risk stratification and improving long-term outcomes for pediatric patients with pancreaticobiliary maljunction.
Key points: Predicting biliary COX-2 expression in pancreaticobiliary maljunction (PBM) is critical but challenging. A deep learning radiopathomics model achieved high predictive accuracy for COX-2. The model supports patient stratification and personalized postoperative management in PBM.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.