Suppressing Halide Segregation in Wide-Bandgap Perovskite Absorbers by Transamination of Formamidinium.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Georgios Loukeris, Clemens Baretzky, Dmitry Bogachuk, Audrey E Gillen, Bowen Yang, Jiajia Suo, Waldemar Kaiser, Edoardo Mosconi, Filippo De Angelis, Gerrit Boschloo, Andreas W Bett, Uli Würfel, Markus Kohlstädt
{"title":"Suppressing Halide Segregation in Wide-Bandgap Perovskite Absorbers by Transamination of Formamidinium.","authors":"Georgios Loukeris, Clemens Baretzky, Dmitry Bogachuk, Audrey E Gillen, Bowen Yang, Jiajia Suo, Waldemar Kaiser, Edoardo Mosconi, Filippo De Angelis, Gerrit Boschloo, Andreas W Bett, Uli Würfel, Markus Kohlstädt","doi":"10.1002/cphc.202500022","DOIUrl":null,"url":null,"abstract":"<p><p>All-perovskite tandem solar cells are emerging at a fast rate because of their potential to exceed efficiencies of Si-perovskite tandems, in combination with faster manufacturing, lower cost and the ability to be processed on flexible substrates. Mixing halides is key to achieve wide band gap absorbers, which however suffer from halide segregation under illumination resulting in lowering of the band gap. To tackle this problem, butylamine (BA) has been added to the perovskite precursor solution and was found to react with the formamidinium (FA) cation, producing N-butylformamidinium (BuFA) which accumulates at the perovskite surface and grain boundaries. The creation of the BuFA cation results in suppressed halide segregation and improved crystallization. Density functional theory calculations propose the reduction of halide defect formation upon addition of BA, being key to stabilize mixed-halide perovskites. Lastly, we observe a more stable performance of single junction p-i-n perovskite solar cells with addition of BA under constant illumination at 65°C.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500022"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500022","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

All-perovskite tandem solar cells are emerging at a fast rate because of their potential to exceed efficiencies of Si-perovskite tandems, in combination with faster manufacturing, lower cost and the ability to be processed on flexible substrates. Mixing halides is key to achieve wide band gap absorbers, which however suffer from halide segregation under illumination resulting in lowering of the band gap. To tackle this problem, butylamine (BA) has been added to the perovskite precursor solution and was found to react with the formamidinium (FA) cation, producing N-butylformamidinium (BuFA) which accumulates at the perovskite surface and grain boundaries. The creation of the BuFA cation results in suppressed halide segregation and improved crystallization. Density functional theory calculations propose the reduction of halide defect formation upon addition of BA, being key to stabilize mixed-halide perovskites. Lastly, we observe a more stable performance of single junction p-i-n perovskite solar cells with addition of BA under constant illumination at 65°C.

甲酰胺转氨化抑制宽带隙钙钛矿吸收剂中的卤化物偏析。
全钙钛矿串联太阳能电池正以快速的速度出现,因为它们具有超过硅钙钛矿串联效率的潜力,再加上制造速度更快、成本更低以及在柔性衬底上加工的能力。混合卤化物是实现宽禁带吸收的关键,但在光照下卤化物偏析导致禁带减小。为了解决这一问题,将丁胺(BA)添加到钙钛矿前驱体溶液中,并发现它与甲脒(FA)阳离子反应,产生n -丁基甲脒(BuFA), BuFA积聚在钙钛矿表面和晶界。BuFA阳离子的产生抑制了卤化物偏析,改善了结晶。密度泛函理论计算表明,BA的加入减少了卤化物缺陷的形成,这是稳定混合卤化物钙钛矿的关键。最后,我们观察到添加BA的单结p-i-n钙钛矿太阳能电池在65°C恒定光照下的性能更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信