Bo He, Kira H Wood, Zhi-Jie Li, Judith A Ermer, Ji Li, Edward R Bastow, Suraj Sakaram, Phillip K Darcy, Lisa J Spalding, Cameron T Redfern, Jordi Canes, Mafalda Oliveira, Aleix Prat, Javier Cortes, Erik W Thompson, Bruce A Littlefield, Andrew Redfern, Ruth Ganss
{"title":"Selective tubulin-binding drugs induce pericyte phenotype switching and anti-cancer immunity.","authors":"Bo He, Kira H Wood, Zhi-Jie Li, Judith A Ermer, Ji Li, Edward R Bastow, Suraj Sakaram, Phillip K Darcy, Lisa J Spalding, Cameron T Redfern, Jordi Canes, Mafalda Oliveira, Aleix Prat, Javier Cortes, Erik W Thompson, Bruce A Littlefield, Andrew Redfern, Ruth Ganss","doi":"10.1038/s44321-025-00222-6","DOIUrl":null,"url":null,"abstract":"<p><p>The intratumoral immune milieu is crucial for the success of anti-cancer immunotherapy. We show here that stromal modulation by the tubulin-binding anti-cancer drugs combretastatin A4 (CA-4) and eribulin improved tumor perfusion and anti-tumor immunity. This was achieved by reverting highly proliferative, angiogenic pericytes into a quiescent, contractile state which durably normalized the vascular bed and reduced hypoxia in mouse models of pancreatic neuroendocrine cancer, breast cancer and melanoma. The crucial event in pericyte phenotype switching was RhoA kinase activation, which distinguished CA-4 and eribulin effects from other anti-mitotic drugs such as paclitaxel and vinorelbine. Importantly, eribulin pre-treatment sensitized tumors for adoptive T cell therapy or checkpoint inhibition resulting in effector cell infiltration and better survival outcomes in mice. In breast cancer patients, eribulin neoadjuvant treatment induced pericyte maturity and RhoA kinase activity indicating similar vessel remodeling effects as seen in mice. Moreover, a contractile pericyte signature was associated with overall better survival outcome in two independent breast cancer cohorts. This underscores the potential of re-purposing specific anti-cancer drugs to enable synergistic complementation with emerging immunotherapies.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00222-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intratumoral immune milieu is crucial for the success of anti-cancer immunotherapy. We show here that stromal modulation by the tubulin-binding anti-cancer drugs combretastatin A4 (CA-4) and eribulin improved tumor perfusion and anti-tumor immunity. This was achieved by reverting highly proliferative, angiogenic pericytes into a quiescent, contractile state which durably normalized the vascular bed and reduced hypoxia in mouse models of pancreatic neuroendocrine cancer, breast cancer and melanoma. The crucial event in pericyte phenotype switching was RhoA kinase activation, which distinguished CA-4 and eribulin effects from other anti-mitotic drugs such as paclitaxel and vinorelbine. Importantly, eribulin pre-treatment sensitized tumors for adoptive T cell therapy or checkpoint inhibition resulting in effector cell infiltration and better survival outcomes in mice. In breast cancer patients, eribulin neoadjuvant treatment induced pericyte maturity and RhoA kinase activity indicating similar vessel remodeling effects as seen in mice. Moreover, a contractile pericyte signature was associated with overall better survival outcome in two independent breast cancer cohorts. This underscores the potential of re-purposing specific anti-cancer drugs to enable synergistic complementation with emerging immunotherapies.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)