Anabella Aguilera, Daniel Lundin, Evangelia Charalampous, Yelena Churakova, Christian Tellgren-Roth, Sylwia Śliwińska-Wilczewska, Daniel J Conley, Hanna Farnelid, Jarone Pinhassi
{"title":"The evaluation of biogenic silica in brackish and freshwater strains reveals links between phylogeny and silica accumulation in picocyanobacteria.","authors":"Anabella Aguilera, Daniel Lundin, Evangelia Charalampous, Yelena Churakova, Christian Tellgren-Roth, Sylwia Śliwińska-Wilczewska, Daniel J Conley, Hanna Farnelid, Jarone Pinhassi","doi":"10.1128/aem.02527-24","DOIUrl":null,"url":null,"abstract":"<p><p>Through biosilicification, organisms incorporate dissolved silica (dSi) and deposit it as biogenic silica (bSi), driving the silicon (Si) cycle in aquatic systems. While Si accumulation in marine picocyanobacteria has been recently observed, its mechanisms and ecological implications remain unclear. This study investigates biosilicification in marine and brackish picocyanobacteria of the <i>Synechococcus</i> clade and two model freshwater coccoid cyanobacteria. Brackish strains showed significantly higher Si quotas when supplemented with external dSi (100 µM) compared to controls (up to 60.0 ± 7.3 amol Si.cell-1 versus 9.2 to 16.3 ± 2.9 amol Si.cell-1). Conversely, freshwater strains displayed no significant differences in Si quotas between dSi-enriched treatments and controls, emphasizing that not all phytoplanktons without an obligate Si requirement accumulate this element. The Si-accumulating marine and brackish picocyanobacteria clustered within the <i>Synechococcus</i> clade, whereas their freshwater counterparts formed a distinct sister group, suggesting a link between phylogeny and silicification. Rapid culture growth caused increased pH and led to dSi precipitation, influencing apparent dSi uptake; this was mitigated by pH control through bubbling. This phenomenon has significant implications for natural systems affected by phytoplankton blooms. In such environments, pH-induced silicon precipitation may reduce dSi availability impacting Si-dependent populations like diatoms. Our findings suggest brackish picocyanobacteria could significantly influence the Si cycle through at least two mechanisms: cellular Si accumulation and biologically induced changes in dSi concentrations.IMPORTANCEThis work provides the first evidence of biogenic silica accumulation in brackish picocyanobacteria and uncovers a link between phylogeny and biosilicification patterns. Our findings demonstrate that picocyanobacterial growth induces pH-dependent silica precipitation, which could lead to overestimations of cellular Si quotas by up to 85%. This process may drive substantial silica precipitation in highly productive freshwater and coastal marine systems, with potential effects on silica cycling and the population dynamics of Si-dependent phytoplankton. The extent of biosilicification in modern picocyanobacteria offers insights into the rock record, shedding light on the evolutionary and ecological dynamics that influence sedimentary processes and the preservation of biosilicification signatures in geological formations. Overall, this research adds to the significant impact that microorganisms lacking an obligate silica requirement may have on silica dynamics.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0252724"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02527-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Through biosilicification, organisms incorporate dissolved silica (dSi) and deposit it as biogenic silica (bSi), driving the silicon (Si) cycle in aquatic systems. While Si accumulation in marine picocyanobacteria has been recently observed, its mechanisms and ecological implications remain unclear. This study investigates biosilicification in marine and brackish picocyanobacteria of the Synechococcus clade and two model freshwater coccoid cyanobacteria. Brackish strains showed significantly higher Si quotas when supplemented with external dSi (100 µM) compared to controls (up to 60.0 ± 7.3 amol Si.cell-1 versus 9.2 to 16.3 ± 2.9 amol Si.cell-1). Conversely, freshwater strains displayed no significant differences in Si quotas between dSi-enriched treatments and controls, emphasizing that not all phytoplanktons without an obligate Si requirement accumulate this element. The Si-accumulating marine and brackish picocyanobacteria clustered within the Synechococcus clade, whereas their freshwater counterparts formed a distinct sister group, suggesting a link between phylogeny and silicification. Rapid culture growth caused increased pH and led to dSi precipitation, influencing apparent dSi uptake; this was mitigated by pH control through bubbling. This phenomenon has significant implications for natural systems affected by phytoplankton blooms. In such environments, pH-induced silicon precipitation may reduce dSi availability impacting Si-dependent populations like diatoms. Our findings suggest brackish picocyanobacteria could significantly influence the Si cycle through at least two mechanisms: cellular Si accumulation and biologically induced changes in dSi concentrations.IMPORTANCEThis work provides the first evidence of biogenic silica accumulation in brackish picocyanobacteria and uncovers a link between phylogeny and biosilicification patterns. Our findings demonstrate that picocyanobacterial growth induces pH-dependent silica precipitation, which could lead to overestimations of cellular Si quotas by up to 85%. This process may drive substantial silica precipitation in highly productive freshwater and coastal marine systems, with potential effects on silica cycling and the population dynamics of Si-dependent phytoplankton. The extent of biosilicification in modern picocyanobacteria offers insights into the rock record, shedding light on the evolutionary and ecological dynamics that influence sedimentary processes and the preservation of biosilicification signatures in geological formations. Overall, this research adds to the significant impact that microorganisms lacking an obligate silica requirement may have on silica dynamics.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.