Growth-coupled continuous directed evolution by MutaT7 enables efficient and automated enzyme engineering.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yijie Deng, Kai Etheridge, Xinping Ran, Hannah E Maurais, Rahul Sarpeshkar
{"title":"Growth-coupled continuous directed evolution by MutaT7 enables efficient and automated enzyme engineering.","authors":"Yijie Deng, Kai Etheridge, Xinping Ran, Hannah E Maurais, Rahul Sarpeshkar","doi":"10.1128/aem.02491-24","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional directed evolution is limited by labor-intensive iterative steps and low-throughput selection and screening. To address these challenges, we developed a growth-coupled continuous directed evolution (GCCDE) approach, enabling automated and efficient enzyme engineering. By linking enzyme activity to bacterial growth and utilizing the MutaT7 system, GCCDE combines <i>in vivo</i> mutagenesis and high-throughput selection of superior enzyme variants in a single process. To validate this approach, we evolved the thermostable enzyme CelB from <i>Pyrococcus furiosus</i> to enhance its β-galactosidase activity at lower temperatures while maintaining thermal stability. CelB activity was coupled to the growth of <i>E. coli</i>, allowing variants with improved activity to utilize lactose more efficiently and promote faster growth in a minimal medium. Using a continuous culture system, we achieved automated high-throughput mutagenesis and simultaneous real-time selection of over 10⁹ variants per culture. Integrating <i>in vitro</i> and <i>in vivo</i> mutagenesis further increased genetic diversity, yielding CelB variants with significantly enhanced low-temperature activity compared to the wild type while preserving thermostability. DNA sequencing identified key mutations likely responsible for improved substrate binding and catalytic turnover. This GCCDE approach is broadly applicable for optimizing diverse enzymes, demonstrating the potential of automated continuous evolution for industrial and research applications.</p><p><strong>Importance: </strong>Enzyme engineering aims to develop enzymes with improved or novel traits, but traditional methods are slow and require repetitive manual steps. This study presents a faster, automated protein engineering approach. We utilized an <i>in vivo</i> mutagenesis technique, MutaT7 tools, to induce mutations in living bacteria and established a direct link between enzyme activity and bacterial growth. A continuous culture setup enables automated mutagenesis and growth-coupled selection of better-performing variants in real time. Bacteria with improved enzymes grew faster, selecting superior variants without manual intervention. Using this method, we engineered CelB with better performance at lower temperatures while maintaining thermal stability. By combining high-throughput mutagenesis and selection in a single process, this system bypasses iterative cycles of error-prone PCR, transformation, and screening. Our approach is adaptable to various enzymes, providing a faster and more efficient solution for enzyme engineering.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0249124"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02491-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional directed evolution is limited by labor-intensive iterative steps and low-throughput selection and screening. To address these challenges, we developed a growth-coupled continuous directed evolution (GCCDE) approach, enabling automated and efficient enzyme engineering. By linking enzyme activity to bacterial growth and utilizing the MutaT7 system, GCCDE combines in vivo mutagenesis and high-throughput selection of superior enzyme variants in a single process. To validate this approach, we evolved the thermostable enzyme CelB from Pyrococcus furiosus to enhance its β-galactosidase activity at lower temperatures while maintaining thermal stability. CelB activity was coupled to the growth of E. coli, allowing variants with improved activity to utilize lactose more efficiently and promote faster growth in a minimal medium. Using a continuous culture system, we achieved automated high-throughput mutagenesis and simultaneous real-time selection of over 10⁹ variants per culture. Integrating in vitro and in vivo mutagenesis further increased genetic diversity, yielding CelB variants with significantly enhanced low-temperature activity compared to the wild type while preserving thermostability. DNA sequencing identified key mutations likely responsible for improved substrate binding and catalytic turnover. This GCCDE approach is broadly applicable for optimizing diverse enzymes, demonstrating the potential of automated continuous evolution for industrial and research applications.

Importance: Enzyme engineering aims to develop enzymes with improved or novel traits, but traditional methods are slow and require repetitive manual steps. This study presents a faster, automated protein engineering approach. We utilized an in vivo mutagenesis technique, MutaT7 tools, to induce mutations in living bacteria and established a direct link between enzyme activity and bacterial growth. A continuous culture setup enables automated mutagenesis and growth-coupled selection of better-performing variants in real time. Bacteria with improved enzymes grew faster, selecting superior variants without manual intervention. Using this method, we engineered CelB with better performance at lower temperatures while maintaining thermal stability. By combining high-throughput mutagenesis and selection in a single process, this system bypasses iterative cycles of error-prone PCR, transformation, and screening. Our approach is adaptable to various enzymes, providing a faster and more efficient solution for enzyme engineering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信