Lymphatic Activation of ACKR3 Signaling Regulates Lymphatic Response After Ischemic Heart Injury.

IF 7.4 1区 医学 Q1 HEMATOLOGY
Laszlo Balint, Shubhangi Patel, Donald Stephen Serafin, Hua Zhang, Kelsey E Quinn, Amir Aghajanian, Bryan M Kistner, Kathleen M Caron
{"title":"Lymphatic Activation of ACKR3 Signaling Regulates Lymphatic Response After Ischemic Heart Injury.","authors":"Laszlo Balint, Shubhangi Patel, Donald Stephen Serafin, Hua Zhang, Kelsey E Quinn, Amir Aghajanian, Bryan M Kistner, Kathleen M Caron","doi":"10.1161/ATVBAHA.124.322288","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic heart disease is a prevalent cause of death and disability worldwide. Recent studies reported a rapid expansion of the cardiac lymphatic network upon ischemic heart injury and proposed that cardiac lymphatics may attenuate tissue edema and inflammatory mechanisms after ischemic heart injury. Nevertheless, the mechanisms through which hypoxic conditions affect cardiac lymphangiogenesis and function remain unclear. Here, we aimed to characterize the role of the AM (adrenomedullin) decoy receptor ACKR3 (atypical chemokine receptor-3) in the lymphatic response following ischemic heart injury.</p><p><strong>Methods: </strong>Spatial assessment of ACKR3 signaling in the heart after ischemic heart injury was conducted using ACKR3-Tango-GFP reporter mice. Roles of ACKR3 after ischemic heart injury were characterized in <i>Ackr3</i><sup><i>∆Lyve1</i></sup> mice and in cultured human lymphatic endothelial cells exposed to hypoxia.</p><p><strong>Results: </strong>Using the novel ACKR3-Tango-GFP reporter mice, we detected activation of ACKR3 signaling in cardiac lymphatics adjacent to the site of ischemic injury of left anterior descending artery ligation. <i>Ackr3</i><sup><i>∆Lyve1</i></sup> mice exhibited better survival after left anterior descending artery ligation, especially within the first couple of days post-injury, and were protected from the formation of acute tissue edema. <i>Ackr3</i><sup><i>∆Lyve1</i></sup> mice exhibited a denser cardiac lymphatic network after left anterior descending artery ligation, especially in the injured tissues. Transcriptomic analysis revealed changes in cardiac lymphatic gene expression patterns that have been associated with extracellular matrix remodeling and immune activation. We also found that ACKR3 plays a critical role in regulating continuous cell-cell junction dynamics in lymphatic endothelial cells under hypoxic conditions.</p><p><strong>Conclusions: </strong>Lymphatic expression of ACKR3 governs numerous processes following ischemic heart injury, including the lymphangiogenic response, edema protection, and overall survival. These results expand our understanding of how the heart failure biomarker AM, regulated by lymphatic ACKR3, may exert its roles after ischemic cardiac injury.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.322288","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ischemic heart disease is a prevalent cause of death and disability worldwide. Recent studies reported a rapid expansion of the cardiac lymphatic network upon ischemic heart injury and proposed that cardiac lymphatics may attenuate tissue edema and inflammatory mechanisms after ischemic heart injury. Nevertheless, the mechanisms through which hypoxic conditions affect cardiac lymphangiogenesis and function remain unclear. Here, we aimed to characterize the role of the AM (adrenomedullin) decoy receptor ACKR3 (atypical chemokine receptor-3) in the lymphatic response following ischemic heart injury.

Methods: Spatial assessment of ACKR3 signaling in the heart after ischemic heart injury was conducted using ACKR3-Tango-GFP reporter mice. Roles of ACKR3 after ischemic heart injury were characterized in Ackr3∆Lyve1 mice and in cultured human lymphatic endothelial cells exposed to hypoxia.

Results: Using the novel ACKR3-Tango-GFP reporter mice, we detected activation of ACKR3 signaling in cardiac lymphatics adjacent to the site of ischemic injury of left anterior descending artery ligation. Ackr3∆Lyve1 mice exhibited better survival after left anterior descending artery ligation, especially within the first couple of days post-injury, and were protected from the formation of acute tissue edema. Ackr3∆Lyve1 mice exhibited a denser cardiac lymphatic network after left anterior descending artery ligation, especially in the injured tissues. Transcriptomic analysis revealed changes in cardiac lymphatic gene expression patterns that have been associated with extracellular matrix remodeling and immune activation. We also found that ACKR3 plays a critical role in regulating continuous cell-cell junction dynamics in lymphatic endothelial cells under hypoxic conditions.

Conclusions: Lymphatic expression of ACKR3 governs numerous processes following ischemic heart injury, including the lymphangiogenic response, edema protection, and overall survival. These results expand our understanding of how the heart failure biomarker AM, regulated by lymphatic ACKR3, may exert its roles after ischemic cardiac injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
337
审稿时长
2-4 weeks
期刊介绍: The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA). The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信