Transmission route-dependent genetic diversity of selected protozoan parasites as reflected by the phylogenetic analysis of the 18S rRNA gene.

IF 0.7 4区 农林科学 Q3 VETERINARY SCIENCES
Sándor Hornok, Gergő Keve, Barbara Tuska-Szalay
{"title":"Transmission route-dependent genetic diversity of selected protozoan parasites as reflected by the phylogenetic analysis of the 18S rRNA gene.","authors":"Sándor Hornok, Gergő Keve, Barbara Tuska-Szalay","doi":"10.1556/004.2025.01128","DOIUrl":null,"url":null,"abstract":"<p><p>In this pilot study, the genetic diversity of protozoan parasites was analysed according to their different transmission routes (life cycle strategies), focusing on those species which were recently discovered or molecularly analysed for the first time in Hungary or its geographical region. The results showed that among four apicomplexan parasites (Babesia gibsoni, Cytauxzoon europaeus, Sarcocystis morae and Hepatozoon felis) the latter had the highest genetic diversity as reflected by its 18S rRNA gene sequences showing high (1.75%) maximum intraspecific pairwise distance, and also, based on its phylogenetic clustering. This is probably related to the long evolutionary history of H. felis, the absence of its intravascular division and other life cycle characteristics precluding direct transmission between hosts. On the other hand, among non-apicomplexan protozoa (Trichomonas gallinae, Pentatrichomonas hominis, Tritrichomonas foetus and Acanthamoeba castellanii), the latter proved to have the highest genetic diversity (7.73%), most likely due to its long evolutionary history, lateral gene transfer, homologous recombination and the absence of direct host-to-host dispersal. Transmission mode had a significant impact on the genetic diversity among protozoan parasites, depending on life cycle strategies and consequent frequency/chance of sexual reproduction vs binary fission. In particular, the absence of direct transmission between hosts is a common trait of H. felis and A. castellanii, contributing to their high genetic diversity.</p>","PeriodicalId":7247,"journal":{"name":"Acta veterinaria Hungarica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta veterinaria Hungarica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1556/004.2025.01128","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this pilot study, the genetic diversity of protozoan parasites was analysed according to their different transmission routes (life cycle strategies), focusing on those species which were recently discovered or molecularly analysed for the first time in Hungary or its geographical region. The results showed that among four apicomplexan parasites (Babesia gibsoni, Cytauxzoon europaeus, Sarcocystis morae and Hepatozoon felis) the latter had the highest genetic diversity as reflected by its 18S rRNA gene sequences showing high (1.75%) maximum intraspecific pairwise distance, and also, based on its phylogenetic clustering. This is probably related to the long evolutionary history of H. felis, the absence of its intravascular division and other life cycle characteristics precluding direct transmission between hosts. On the other hand, among non-apicomplexan protozoa (Trichomonas gallinae, Pentatrichomonas hominis, Tritrichomonas foetus and Acanthamoeba castellanii), the latter proved to have the highest genetic diversity (7.73%), most likely due to its long evolutionary history, lateral gene transfer, homologous recombination and the absence of direct host-to-host dispersal. Transmission mode had a significant impact on the genetic diversity among protozoan parasites, depending on life cycle strategies and consequent frequency/chance of sexual reproduction vs binary fission. In particular, the absence of direct transmission between hosts is a common trait of H. felis and A. castellanii, contributing to their high genetic diversity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta veterinaria Hungarica
Acta veterinaria Hungarica 农林科学-兽医学
CiteScore
1.80
自引率
0.00%
发文量
39
审稿时长
>36 weeks
期刊介绍: Acta Veterinaria Hungarica publishes original research papers presenting new scientific results of international interest, and to a limited extent also review articles and clinical case reports, on veterinary physiology (physiological chemistry and metabolism), veterinary microbiology (bacteriology, virology, immunology, molecular biology), on the infectious diseases of domestic animals, on veterinary parasitology, pathology, clinical veterinary science and reproduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信