{"title":"Recent Advances in the Modeling of Ionic Liquids Using Artificial Neural Networks.","authors":"Adrian Racki, Kamil Paduszyński","doi":"10.1021/acs.jcim.4c02364","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reviews the recent and most impactful advancements in the application of artificial neural networks in modeling the properties of ionic liquids. As salts that are liquid at temperatures below 100 °C, ionic liquids possess unique properties beneficial for various industrial applications such as carbon capture, catalytic solvents, and lubricant additives. The study emphasizes the challenges in selecting appropriate ILs due to the vast variability in their properties, which depend significantly on their cation and anion structures. The review discusses the advantages of using ANNs, including feed-forward, cascade-forward, convolutional, recurrent, and graph neural networks, over traditional machine learning algorithms for predicting the thermodynamic and physical properties of ILs. The paper also highlights the importance of data preparation, including data collection, feature engineering, and data cleaning, in developing accurate predictive models. Additionally, the review covers the interpretability of these models using techniques such as SHapley Additive exPlanations to understand feature importance. The authors conclude by discussing future opportunities and the potential of combining ANNs with other computational methods to design new ILs with targeted properties.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reviews the recent and most impactful advancements in the application of artificial neural networks in modeling the properties of ionic liquids. As salts that are liquid at temperatures below 100 °C, ionic liquids possess unique properties beneficial for various industrial applications such as carbon capture, catalytic solvents, and lubricant additives. The study emphasizes the challenges in selecting appropriate ILs due to the vast variability in their properties, which depend significantly on their cation and anion structures. The review discusses the advantages of using ANNs, including feed-forward, cascade-forward, convolutional, recurrent, and graph neural networks, over traditional machine learning algorithms for predicting the thermodynamic and physical properties of ILs. The paper also highlights the importance of data preparation, including data collection, feature engineering, and data cleaning, in developing accurate predictive models. Additionally, the review covers the interpretability of these models using techniques such as SHapley Additive exPlanations to understand feature importance. The authors conclude by discussing future opportunities and the potential of combining ANNs with other computational methods to design new ILs with targeted properties.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.