HIF-1α mediates mitochondrial damage by down-regulating ALKBH7 expression to promote the aberrant activation of FLS in rheumatoid arthritis.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Han Wang, Yu-Chen Zhao, Li Xu, Tian-Jing Zhang, Liang-Hu Liu, Meng-Qi Zhou, Han Zhang, Yin-Ning Yang, Pin Pan, Lin Jin, Zi-Wei Zhang, Xian-Zheng Zhang, Ling-Ling Zhang
{"title":"HIF-1α mediates mitochondrial damage by down-regulating ALKBH7 expression to promote the aberrant activation of FLS in rheumatoid arthritis.","authors":"Han Wang, Yu-Chen Zhao, Li Xu, Tian-Jing Zhang, Liang-Hu Liu, Meng-Qi Zhou, Han Zhang, Yin-Ning Yang, Pin Pan, Lin Jin, Zi-Wei Zhang, Xian-Zheng Zhang, Ling-Ling Zhang","doi":"10.1038/s41401-025-01520-y","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and progressive joint destruction. Existing evidence indicates that hypoxia potentially contributes to the pathology of RA, though the specific mechanism remains unidentified. In this study, we explored the molecular mechanism through which the hypoxia-inducible factor (HIF-1α) contributed to the pathological process of RA. Our preliminary results suggested that hypoxia stimulates the activation of fibroblast-like synoviocytes (FLS) by inducing mitochondrial damage to activate cGAS-STING signaling, which can be effectively inhibited by silencing HIF-1α. In line with this, HIF-1α deficiency significantly alleviated the symptoms of collagen-induced arthritis (CIA) mice. RNA-Seq and CUT-Tag analysis revealed that HIF-1α down-regulated the expression of AlkB homologue 7 (ALKBH7) by acting on the ALKBH7 promoter site on chromosome 19 6372400-6372578. Using dual luciferase reporter analysis, we identified that ACCGTGGC as the motif to which HIF-1α bound directly. Subsequently, we demonstrated that knockdown of ALKBH7 induces mitochondrial damage and activates cGAS-STING signaling by downregulating the expression of UQCRC2. Conversely, overexpression of ALKBH7 could resist hypoxia-induced mitochondrial damage and FLS activation. In conclusion, HIF-1α triggers mitochondrial damage by downregulating the expression of ALKBH7 thereby promoting FLS activation, which may be the molecular mechanism by which hypoxia is involved in the pathological process of RA. Hypoxia promotes the activation of FLS through the induction of mitochondrial damage, which subsequently activates cGAS-STING signaling. Mechanistically, HIF-1α triggers mitochondrial damage by downregulating the expression of ALKBH7 in a target manner. Furthermore, the deletion of ALKBH7 leads to mitochondrial damage under hypoxic conditions, primarily through the downregulation of UQCRC2, as opposed to other complexes.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01520-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and progressive joint destruction. Existing evidence indicates that hypoxia potentially contributes to the pathology of RA, though the specific mechanism remains unidentified. In this study, we explored the molecular mechanism through which the hypoxia-inducible factor (HIF-1α) contributed to the pathological process of RA. Our preliminary results suggested that hypoxia stimulates the activation of fibroblast-like synoviocytes (FLS) by inducing mitochondrial damage to activate cGAS-STING signaling, which can be effectively inhibited by silencing HIF-1α. In line with this, HIF-1α deficiency significantly alleviated the symptoms of collagen-induced arthritis (CIA) mice. RNA-Seq and CUT-Tag analysis revealed that HIF-1α down-regulated the expression of AlkB homologue 7 (ALKBH7) by acting on the ALKBH7 promoter site on chromosome 19 6372400-6372578. Using dual luciferase reporter analysis, we identified that ACCGTGGC as the motif to which HIF-1α bound directly. Subsequently, we demonstrated that knockdown of ALKBH7 induces mitochondrial damage and activates cGAS-STING signaling by downregulating the expression of UQCRC2. Conversely, overexpression of ALKBH7 could resist hypoxia-induced mitochondrial damage and FLS activation. In conclusion, HIF-1α triggers mitochondrial damage by downregulating the expression of ALKBH7 thereby promoting FLS activation, which may be the molecular mechanism by which hypoxia is involved in the pathological process of RA. Hypoxia promotes the activation of FLS through the induction of mitochondrial damage, which subsequently activates cGAS-STING signaling. Mechanistically, HIF-1α triggers mitochondrial damage by downregulating the expression of ALKBH7 in a target manner. Furthermore, the deletion of ALKBH7 leads to mitochondrial damage under hypoxic conditions, primarily through the downregulation of UQCRC2, as opposed to other complexes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信