Uncovering Amyloid-β Interactions: Gray versus White Matter.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gabriel Cathoud, Mohtadin Hashemi, Yuri Lyubchenko, Pedro Simões
{"title":"Uncovering Amyloid-β Interactions: Gray versus White Matter.","authors":"Gabriel Cathoud, Mohtadin Hashemi, Yuri Lyubchenko, Pedro Simões","doi":"10.1021/acschemneuro.4c00439","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is characterized by the accumulation of amyloid plaques in the brain. Recent studies suggest that amyloid-β (Aβ) peptides interact with cell membranes, potentially catalyzing plaque formation. However, the effect of varying cell membrane compositions on this catalytic process requires further investigation. Using molecular dynamics simulations, we demonstrate that a model gray matter membrane significantly influences the secondary structure of β-amyloid peptides. Notably, residues Asp1 and Glu22 play crucial roles in the membrane interaction. Glutamic acid at position 22, located in the middle of the peptide chain, appears to promote the formation of β-hairpin conformations, which are critical for aggregation. Additionally, our simulations reveal that the model white matter membrane allows a spontaneous insertion of segments of the peptide into the membrane, suggesting that membrane interaction not only alters the peptide structure but may also compromise membrane integrity. Our results show that the different membrane compositions in the brain may play different roles when interacting with β-amyloid peptides.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00439","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease is characterized by the accumulation of amyloid plaques in the brain. Recent studies suggest that amyloid-β (Aβ) peptides interact with cell membranes, potentially catalyzing plaque formation. However, the effect of varying cell membrane compositions on this catalytic process requires further investigation. Using molecular dynamics simulations, we demonstrate that a model gray matter membrane significantly influences the secondary structure of β-amyloid peptides. Notably, residues Asp1 and Glu22 play crucial roles in the membrane interaction. Glutamic acid at position 22, located in the middle of the peptide chain, appears to promote the formation of β-hairpin conformations, which are critical for aggregation. Additionally, our simulations reveal that the model white matter membrane allows a spontaneous insertion of segments of the peptide into the membrane, suggesting that membrane interaction not only alters the peptide structure but may also compromise membrane integrity. Our results show that the different membrane compositions in the brain may play different roles when interacting with β-amyloid peptides.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信