Induction of Ferroptotic Cell Death by Neuromelanin Pigments in Dopaminergic Cells.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gizem Kaftan Öcal, Güliz Armagan
{"title":"Induction of Ferroptotic Cell Death by Neuromelanin Pigments in Dopaminergic Cells.","authors":"Gizem Kaftan Öcal, Güliz Armagan","doi":"10.1021/acschemneuro.5c00029","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromelanin (NM) is an iron-rich, insoluble brown or black pigment that exhibits protective properties. However, its accumulation over time may render it a source of free radicals. In Parkinson's disease, dopaminergic neurons with the highest NM levels and increased iron content are preferentially vulnerable to degeneration. Considering NM's iron binding capacity and the critical role of iron in ferroptosis, we aimed to investigate the interplay between neuromelanin and ferroptosis in dopaminergic cells. We prepared two NM pigments: iron-free NM (ifNM) and iron-containing NM (Fe<sup>3+</sup>NM) and, exposed to cells. After verifying NM accumulation, cell viability was assessed in the absence or presence of antioxidants (NAC (1 mM), Trolox (100 μM)) and specific inhibitors of cell death types. Ferroptosis-related parameters, including lipid peroxidation byproducts (4-HNE), lipid ROS, glutathione, intracellular iron, GPX4, and ACSL4, and cellular iron metabolism-related proteins (TfR1, ferroportin, ferritin, IREB2) were evaluated following ifNM and Fe<sup>3+</sup>NM treatments, with or without Ferrostatin-1, Liproxstatin-1 and deferoxamine. Both NMs induced cell death via distinct mechanisms. Ferroptotic cell death by ifNM and Fe<sup>3+</sup>NM was reversed by ferrostatin-1 and NAC (<i>p</i> < 0.05). Significant alterations in lipid peroxidation, GPX4 levels, and iron metabolism were observed independent of NM's iron composition (<i>p</i> < 0.05). Ferritin levels increased following ifNM treatment, reflecting an adaptive response to iron overload, while Fe<sup>3+</sup>NM treatment led to ferritin depletion, possibly via ferritinophagy. Our findings reveal a distinct role of iron-rich and iron-free neuromelanin in modulating ferroptotic pathways, highlighting the potential of targeting neuromelanin-iron interactions as a therapeutic strategy to mitigate neuronal ferroptosis in Parkinson's disease.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromelanin (NM) is an iron-rich, insoluble brown or black pigment that exhibits protective properties. However, its accumulation over time may render it a source of free radicals. In Parkinson's disease, dopaminergic neurons with the highest NM levels and increased iron content are preferentially vulnerable to degeneration. Considering NM's iron binding capacity and the critical role of iron in ferroptosis, we aimed to investigate the interplay between neuromelanin and ferroptosis in dopaminergic cells. We prepared two NM pigments: iron-free NM (ifNM) and iron-containing NM (Fe3+NM) and, exposed to cells. After verifying NM accumulation, cell viability was assessed in the absence or presence of antioxidants (NAC (1 mM), Trolox (100 μM)) and specific inhibitors of cell death types. Ferroptosis-related parameters, including lipid peroxidation byproducts (4-HNE), lipid ROS, glutathione, intracellular iron, GPX4, and ACSL4, and cellular iron metabolism-related proteins (TfR1, ferroportin, ferritin, IREB2) were evaluated following ifNM and Fe3+NM treatments, with or without Ferrostatin-1, Liproxstatin-1 and deferoxamine. Both NMs induced cell death via distinct mechanisms. Ferroptotic cell death by ifNM and Fe3+NM was reversed by ferrostatin-1 and NAC (p < 0.05). Significant alterations in lipid peroxidation, GPX4 levels, and iron metabolism were observed independent of NM's iron composition (p < 0.05). Ferritin levels increased following ifNM treatment, reflecting an adaptive response to iron overload, while Fe3+NM treatment led to ferritin depletion, possibly via ferritinophagy. Our findings reveal a distinct role of iron-rich and iron-free neuromelanin in modulating ferroptotic pathways, highlighting the potential of targeting neuromelanin-iron interactions as a therapeutic strategy to mitigate neuronal ferroptosis in Parkinson's disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信