Reactive pressure-swing distillation (RPSD) is an innovative and promising technology for the separation of azeotropic systems, offering high integration and efficiency. However, the dynamic control of RPSD processes presents significant challenges due to complex coupling and nonlinearity. This paper investigates the practical control structures for the RPSD processes, and the dynamic control structure was first designed for the RPSD system for separating tetrahydrofuran/methanol/water.
RESULT
Three practical control structures based on PID control were developed for existing separation processes, both with and without heat integration. The results demonstrated that all designed control structures effectively withstand disturbances of ±20% in feed flow rate and composition, exhibiting strong anti-interference capabilities. Furthermore, an advanced intelligent control strategy was designed, integrating PID control with Back Propagation Neural Networks (BPNN) to enhance the performance of the product composition controllers.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.