Dynamic control of reactive pressure-swing distillation process for separating tetrahydrofuran/methanol/water

IF 2.8 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kun Yang, Shangkun Wang, Zeng Li, Xiaojing Liu, Fangkun Zhang, Baoming Shan, Peizhe Cui, Qilei Xu
{"title":"Dynamic control of reactive pressure-swing distillation process for separating tetrahydrofuran/methanol/water","authors":"Kun Yang,&nbsp;Shangkun Wang,&nbsp;Zeng Li,&nbsp;Xiaojing Liu,&nbsp;Fangkun Zhang,&nbsp;Baoming Shan,&nbsp;Peizhe Cui,&nbsp;Qilei Xu","doi":"10.1002/jctb.7825","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> BACKGROUND</h3>\n \n <p>Reactive pressure-swing distillation (RPSD) is an innovative and promising technology for the separation of azeotropic systems, offering high integration and efficiency. However, the dynamic control of RPSD processes presents significant challenges due to complex coupling and nonlinearity. This paper investigates the practical control structures for the RPSD processes, and the dynamic control structure was first designed for the RPSD system for separating tetrahydrofuran/methanol/water.</p>\n </section>\n \n <section>\n \n <h3> RESULT</h3>\n \n <p>Three practical control structures based on PID control were developed for existing separation processes, both with and without heat integration. The results demonstrated that all designed control structures effectively withstand disturbances of ±20% in feed flow rate and composition, exhibiting strong anti-interference capabilities. Furthermore, an advanced intelligent control strategy was designed, integrating PID control with Back Propagation Neural Networks (BPNN) to enhance the performance of the product composition controllers.</p>\n </section>\n \n <section>\n \n <h3> CONCLUSION</h3>\n \n <p>The results indicated that the BPNN can accurately predict temperature setpoints using easily measurable variables, facilitating stable control of product concentrations without the necessity for direct composition measurements. This proposed control strategy offers an efficient and reliable alternative for the control of RPSD processes. © 2025 Society of Chemical Industry (SCI).</p>\n </section>\n </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":"100 4","pages":"818-840"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical technology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7825","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND

Reactive pressure-swing distillation (RPSD) is an innovative and promising technology for the separation of azeotropic systems, offering high integration and efficiency. However, the dynamic control of RPSD processes presents significant challenges due to complex coupling and nonlinearity. This paper investigates the practical control structures for the RPSD processes, and the dynamic control structure was first designed for the RPSD system for separating tetrahydrofuran/methanol/water.

RESULT

Three practical control structures based on PID control were developed for existing separation processes, both with and without heat integration. The results demonstrated that all designed control structures effectively withstand disturbances of ±20% in feed flow rate and composition, exhibiting strong anti-interference capabilities. Furthermore, an advanced intelligent control strategy was designed, integrating PID control with Back Propagation Neural Networks (BPNN) to enhance the performance of the product composition controllers.

CONCLUSION

The results indicated that the BPNN can accurately predict temperature setpoints using easily measurable variables, facilitating stable control of product concentrations without the necessity for direct composition measurements. This proposed control strategy offers an efficient and reliable alternative for the control of RPSD processes. © 2025 Society of Chemical Industry (SCI).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
5.90%
发文量
268
审稿时长
1.7 months
期刊介绍: Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信