A knowledge-based materials descriptor for compositional dependence of phase transformation in NiTi shape memory alloys

Cheng Li, Qingkai Liang, Yumei Zhou, Dezhen Xue
{"title":"A knowledge-based materials descriptor for compositional dependence of phase transformation in NiTi shape memory alloys","authors":"Cheng Li,&nbsp;Qingkai Liang,&nbsp;Yumei Zhou,&nbsp;Dezhen Xue","doi":"10.1002/mgea.72","DOIUrl":null,"url":null,"abstract":"<p>This study presents ∆τ, a novel descriptor that captures the compositional dependence of phase transformation temperature (Ap) in NiTi-based shape memory alloys (SMAs). Designed to address the complexity of multicomponent SMAs, ∆τ was integrated into symbolic regression (SR) and kernel ridge regression (KRR) models, yielding substantial improvements in predicting key functional properties: transformation temperature, enthalpy, and thermal hysteresis. Using the KRR model with ∆τ, we explored the NiTiHfZrCu compositional space, identifying six promising alloys with high Ap (&gt;250°C), large enthalpy (&gt;27 J/g), and low thermal hysteresis. Experimental validation confirmed the model's accuracy with the alloys showing high-temperature transformation behavior and low hysteresis, suitable for high-performance applications in aerospace and nuclear industries. These findings underscore the power of domain-informed descriptors like ∆τ in enhancing machine learning-driven materials design.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.72","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents ∆τ, a novel descriptor that captures the compositional dependence of phase transformation temperature (Ap) in NiTi-based shape memory alloys (SMAs). Designed to address the complexity of multicomponent SMAs, ∆τ was integrated into symbolic regression (SR) and kernel ridge regression (KRR) models, yielding substantial improvements in predicting key functional properties: transformation temperature, enthalpy, and thermal hysteresis. Using the KRR model with ∆τ, we explored the NiTiHfZrCu compositional space, identifying six promising alloys with high Ap (>250°C), large enthalpy (>27 J/g), and low thermal hysteresis. Experimental validation confirmed the model's accuracy with the alloys showing high-temperature transformation behavior and low hysteresis, suitable for high-performance applications in aerospace and nuclear industries. These findings underscore the power of domain-informed descriptors like ∆τ in enhancing machine learning-driven materials design.

Abstract Image

基于知识的NiTi形状记忆合金相变组分依赖性材料描述符
本研究提出了∆τ,这是一种新的描述符,可以捕获niti基形状记忆合金(sma)中相变温度(Ap)的成分依赖性。为了解决多组分sma的复杂性,∆τ被整合到符号回归(SR)和核脊回归(KRR)模型中,在预测关键功能特性(转化温度、焓和热滞后)方面取得了实质性的改进。利用带∆τ的KRR模型,我们探索了NiTiHfZrCu的成分空间,确定了6种具有高Ap (>250°C)、大焓(>27 J/g)和低热滞后的有前途的合金。实验验证了模型的准确性,合金表现出高温转变行为和低迟滞,适用于航空航天和核工业的高性能应用。这些发现强调了领域信息描述符(如∆τ)在增强机器学习驱动的材料设计方面的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信