{"title":"A knowledge-based materials descriptor for compositional dependence of phase transformation in NiTi shape memory alloys","authors":"Cheng Li, Qingkai Liang, Yumei Zhou, Dezhen Xue","doi":"10.1002/mgea.72","DOIUrl":null,"url":null,"abstract":"<p>This study presents ∆τ, a novel descriptor that captures the compositional dependence of phase transformation temperature (Ap) in NiTi-based shape memory alloys (SMAs). Designed to address the complexity of multicomponent SMAs, ∆τ was integrated into symbolic regression (SR) and kernel ridge regression (KRR) models, yielding substantial improvements in predicting key functional properties: transformation temperature, enthalpy, and thermal hysteresis. Using the KRR model with ∆τ, we explored the NiTiHfZrCu compositional space, identifying six promising alloys with high Ap (>250°C), large enthalpy (>27 J/g), and low thermal hysteresis. Experimental validation confirmed the model's accuracy with the alloys showing high-temperature transformation behavior and low hysteresis, suitable for high-performance applications in aerospace and nuclear industries. These findings underscore the power of domain-informed descriptors like ∆τ in enhancing machine learning-driven materials design.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.72","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents ∆τ, a novel descriptor that captures the compositional dependence of phase transformation temperature (Ap) in NiTi-based shape memory alloys (SMAs). Designed to address the complexity of multicomponent SMAs, ∆τ was integrated into symbolic regression (SR) and kernel ridge regression (KRR) models, yielding substantial improvements in predicting key functional properties: transformation temperature, enthalpy, and thermal hysteresis. Using the KRR model with ∆τ, we explored the NiTiHfZrCu compositional space, identifying six promising alloys with high Ap (>250°C), large enthalpy (>27 J/g), and low thermal hysteresis. Experimental validation confirmed the model's accuracy with the alloys showing high-temperature transformation behavior and low hysteresis, suitable for high-performance applications in aerospace and nuclear industries. These findings underscore the power of domain-informed descriptors like ∆τ in enhancing machine learning-driven materials design.