Kesheng Chen;Wenjian Luo;Qi Zhou;Yujiang liu;Peilan Xu;Yuhui Shi
{"title":"A Novel Immune Algorithm for Multiparty Multiobjective Optimization","authors":"Kesheng Chen;Wenjian Luo;Qi Zhou;Yujiang liu;Peilan Xu;Yuhui Shi","doi":"10.1109/TETCI.2024.3515013","DOIUrl":null,"url":null,"abstract":"Traditional multiobjective optimization problems (MOPs) are insufficiently equipped for scenarios involving multiple decision makers (DMs), which are prevalent in many practical applications. These scenarios are categorized as multiparty multiobjective optimization problems (MPMOPs). For MPMOPs, the goal is to find a solution set that is as close to the Pareto front of each DM as much as possible. This poses challenges for evolutionary algorithms in terms of searching and selecting. To better solve MPMOPs, this paper proposes a novel approach called the multiparty immune algorithm (MPIA). The MPIA incorporates an inter-party guided crossover strategy based on the individual's non-dominated sorting ranks from different DM perspectives and an adaptive activation strategy based on the proposed multiparty cover metric (MCM). These strategies enable MPIA to activate suitable individuals for the next operations, maintain population diversity from different DM perspectives, and enhance the algorithm's search capability. To evaluate the performance of MPIA, we compare it with ordinary multiobjective evolutionary algorithms (MOEAs) and state-of-the-art multiparty multiobjective optimization evolutionary algorithms (MPMOEAs) by solving synthetic multiparty multiobjective problems and real-world biparty multiobjective unmanned aerial vehicle path planning (BPUAV-PP) problems involving multiple DMs. Experimental results demonstrate that MPIA outperforms other algorithms.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1238-1252"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10826581/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional multiobjective optimization problems (MOPs) are insufficiently equipped for scenarios involving multiple decision makers (DMs), which are prevalent in many practical applications. These scenarios are categorized as multiparty multiobjective optimization problems (MPMOPs). For MPMOPs, the goal is to find a solution set that is as close to the Pareto front of each DM as much as possible. This poses challenges for evolutionary algorithms in terms of searching and selecting. To better solve MPMOPs, this paper proposes a novel approach called the multiparty immune algorithm (MPIA). The MPIA incorporates an inter-party guided crossover strategy based on the individual's non-dominated sorting ranks from different DM perspectives and an adaptive activation strategy based on the proposed multiparty cover metric (MCM). These strategies enable MPIA to activate suitable individuals for the next operations, maintain population diversity from different DM perspectives, and enhance the algorithm's search capability. To evaluate the performance of MPIA, we compare it with ordinary multiobjective evolutionary algorithms (MOEAs) and state-of-the-art multiparty multiobjective optimization evolutionary algorithms (MPMOEAs) by solving synthetic multiparty multiobjective problems and real-world biparty multiobjective unmanned aerial vehicle path planning (BPUAV-PP) problems involving multiple DMs. Experimental results demonstrate that MPIA outperforms other algorithms.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.