DNN-Based 3-D Cloud Retrieval for Variable Solar Illumination and Multiview Spaceborne Imaging

Tamar Klein;Tom Aizenberg;Roi Ronen
{"title":"DNN-Based 3-D Cloud Retrieval for Variable Solar Illumination and Multiview Spaceborne Imaging","authors":"Tamar Klein;Tom Aizenberg;Roi Ronen","doi":"10.1109/LGRS.2025.3550408","DOIUrl":null,"url":null,"abstract":"Climate studies often rely on remotely sensed images to retrieve 2-D maps of cloud properties. To advance volumetric analysis, we focus on recovering the 3-D heterogeneous extinction coefficient field of shallow clouds using multiview remote sensing data. Climate research requires large-scale worldwide statistics. To enable scalable data processing, previous deep neural networks (DNNs) can infer at spaceborne remote sensing downlink rates. However, prior methods are limited to a fixed solar illumination direction. In this work, we introduce the first scalable DNN-based system for 3-D cloud retrieval that accommodates varying camera positions and solar directions. By integrating multiview cloud intensity images with camera position and solar direction data, we achieve greater flexibility in recovery. Training of the DNN is performed by a novel two-stage scheme to address the high number of degrees of freedom in this problem. Our approach shows substantial improvements over previous state-of-the-art methods, particularly in handling variations in the sun’s zenith angle.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10921716/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Climate studies often rely on remotely sensed images to retrieve 2-D maps of cloud properties. To advance volumetric analysis, we focus on recovering the 3-D heterogeneous extinction coefficient field of shallow clouds using multiview remote sensing data. Climate research requires large-scale worldwide statistics. To enable scalable data processing, previous deep neural networks (DNNs) can infer at spaceborne remote sensing downlink rates. However, prior methods are limited to a fixed solar illumination direction. In this work, we introduce the first scalable DNN-based system for 3-D cloud retrieval that accommodates varying camera positions and solar directions. By integrating multiview cloud intensity images with camera position and solar direction data, we achieve greater flexibility in recovery. Training of the DNN is performed by a novel two-stage scheme to address the high number of degrees of freedom in this problem. Our approach shows substantial improvements over previous state-of-the-art methods, particularly in handling variations in the sun’s zenith angle.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信