Syn2Real Domain Generalization for Underwater Mine-Like Object Detection Using Side-Scan Sonar

Aayush Agrawal;Aniruddh Sikdar;Rajini Makam;Suresh Sundaram;Suresh Kumar Besai;Mahesh Gopi
{"title":"Syn2Real Domain Generalization for Underwater Mine-Like Object Detection Using Side-Scan Sonar","authors":"Aayush Agrawal;Aniruddh Sikdar;Rajini Makam;Suresh Sundaram;Suresh Kumar Besai;Mahesh Gopi","doi":"10.1109/LGRS.2025.3550037","DOIUrl":null,"url":null,"abstract":"Underwater mine-like object (MLO) detection with deep learning suffers from limitations due to the scarcity of real-world side-scan sonar (SSS) data. This scarcity leads to overfitting, where models perform well on training data but poorly on unseen data. In this letter, we propose a synthetic to real (Syn2Real) domain generalization approach using diffusion models to address this challenge. Synthetic data generated by DDPM and DDIM models effectively enhances the training dataset. The residual noise in the final sampled images improves the model’s ability to generalize to real-world data with inherent noise and high variation. The baseline mask-region-based convolutional neural network (RCNN) model when trained on a combination of synthetic and original SSS training datasets, exhibited approximately a 35% increase in average precision (AP) compared to being trained solely on the original training data. This significant improvement highlights the potential of Syn2Real domain generalization for underwater mine detection.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919029/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater mine-like object (MLO) detection with deep learning suffers from limitations due to the scarcity of real-world side-scan sonar (SSS) data. This scarcity leads to overfitting, where models perform well on training data but poorly on unseen data. In this letter, we propose a synthetic to real (Syn2Real) domain generalization approach using diffusion models to address this challenge. Synthetic data generated by DDPM and DDIM models effectively enhances the training dataset. The residual noise in the final sampled images improves the model’s ability to generalize to real-world data with inherent noise and high variation. The baseline mask-region-based convolutional neural network (RCNN) model when trained on a combination of synthetic and original SSS training datasets, exhibited approximately a 35% increase in average precision (AP) compared to being trained solely on the original training data. This significant improvement highlights the potential of Syn2Real domain generalization for underwater mine detection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信