Super-Resolution Imaging Method for Synthetic Aperture Interferometric Radiometer Based on Spectral Extrapolation

Jianfei Chen;Jiahao Yu;Yujie Ruan;Chenggong Zhang;Ziang Zheng;Fuxin Cai;Shujin Zhu;Leilei Liu
{"title":"Super-Resolution Imaging Method for Synthetic Aperture Interferometric Radiometer Based on Spectral Extrapolation","authors":"Jianfei Chen;Jiahao Yu;Yujie Ruan;Chenggong Zhang;Ziang Zheng;Fuxin Cai;Shujin Zhu;Leilei Liu","doi":"10.1109/LGRS.2025.3551235","DOIUrl":null,"url":null,"abstract":"The Synthetic Aperture Interferometric Radiometer (SAIR) can realize high-resolution real-time imaging observation by using aperture synthesis technology, which has strong application advantages in the field of earth remote sensing and radio astronomy. However, due to the limitation of engineering technology, the aperture of the SAIR is still limited, which limits the further improvement of SAIR’s spatial resolution. Therefore, this letter proposes a novel super-resolution imaging method based on spectral extrapolation network (SR-SEN), which can further improve the SAIR’s imaging resolution without increasing the system hardware scale. In the SR-SEN method, the spectral extrapolation subnet is used to deduce the high-frequency spectral components from the low-frequency visibility function measured by the SAIR system, and the iterative reconstruction subnet is constructed to realize the super-resolution imaging inversion of the target scene. The simulation results show that the proposed SR-SEN method can realize accurate spectral extrapolation, improve the imaging resolution of SAIR, and finally realize high-quality imaging inversion.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10926869/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Synthetic Aperture Interferometric Radiometer (SAIR) can realize high-resolution real-time imaging observation by using aperture synthesis technology, which has strong application advantages in the field of earth remote sensing and radio astronomy. However, due to the limitation of engineering technology, the aperture of the SAIR is still limited, which limits the further improvement of SAIR’s spatial resolution. Therefore, this letter proposes a novel super-resolution imaging method based on spectral extrapolation network (SR-SEN), which can further improve the SAIR’s imaging resolution without increasing the system hardware scale. In the SR-SEN method, the spectral extrapolation subnet is used to deduce the high-frequency spectral components from the low-frequency visibility function measured by the SAIR system, and the iterative reconstruction subnet is constructed to realize the super-resolution imaging inversion of the target scene. The simulation results show that the proposed SR-SEN method can realize accurate spectral extrapolation, improve the imaging resolution of SAIR, and finally realize high-quality imaging inversion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信