Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ping Guo;Cheng Gong;Xi Lin;Zhiyuan Yang;Qingfu Zhang
{"title":"Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume","authors":"Ping Guo;Cheng Gong;Xi Lin;Zhiyuan Yang;Qingfu Zhang","doi":"10.1109/TETCI.2025.3535656","DOIUrl":null,"url":null,"abstract":"The escalating threat of adversarial attacks on deep learning models, particularly in security-critical fields, has highlighted the need for robust deep learning systems. Conventional evaluation methods of their robustness rely on adversarial accuracy, which measures the model performance under a specific perturbation intensity. However, this singular metric does not fully encapsulate the overall resilience of a model against varying degrees of perturbation. To address this issue, we propose a new metric termed as the adversarial hypervolume for assessing the robustness of deep learning models comprehensively over a range of perturbation intensities from a multi-objective optimization standpoint. This metric allows for an in-depth comparison of defense mechanisms and recognizes the trivial improvements in robustness brought by less potent defensive strategies. We adopt a novel training algorithm to enhance adversarial robustness uniformly across various perturbation intensities, instead of only optimizing adversarial accuracy. Our experiments validate the effectiveness of the adversarial hypervolume metric in robustness evaluation, demonstrating its ability to reveal subtle differences in robustness that adversarial accuracy overlooks.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1367-1378"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10885038/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating threat of adversarial attacks on deep learning models, particularly in security-critical fields, has highlighted the need for robust deep learning systems. Conventional evaluation methods of their robustness rely on adversarial accuracy, which measures the model performance under a specific perturbation intensity. However, this singular metric does not fully encapsulate the overall resilience of a model against varying degrees of perturbation. To address this issue, we propose a new metric termed as the adversarial hypervolume for assessing the robustness of deep learning models comprehensively over a range of perturbation intensities from a multi-objective optimization standpoint. This metric allows for an in-depth comparison of defense mechanisms and recognizes the trivial improvements in robustness brought by less potent defensive strategies. We adopt a novel training algorithm to enhance adversarial robustness uniformly across various perturbation intensities, instead of only optimizing adversarial accuracy. Our experiments validate the effectiveness of the adversarial hypervolume metric in robustness evaluation, demonstrating its ability to reveal subtle differences in robustness that adversarial accuracy overlooks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信